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Abstract

Inspired by recent successes of deep learning in com-
puter vision and speech recognition, we propose a novel
framework to encode time series data as different types
of images, namely, Gramian Angular Fields (GAF) and
Markov Transition Fields (MTF). This enables the use
of techniques from computer vision for classification.
Using a polar coordinate system, GAF images are rep-
resented as a Gramian matrix where each element is the
trigonometric sum (i.e., superposition of directions) be-
tween different time intervals. MTF images represent
the first order Markov transition probability along one
dimension and temporal dependency along the other.
We used Tiled Convolutional Neural Networks (tiled
CNNs) on 12 standard datasets to learn high-level fea-
tures from individual GAF, MTF, and GAF-MTF im-
ages that resulted from combining GAF and MTF rep-
resentations into a single image. The classification re-
sults of our approach are competitive with five state-
of-the-art approaches. An analysis of the features and
weights learned via tiled CNNs explains why the ap-
proach works.

Introduction
We consider the problem of encoding time series data as im-
ages to allow machines to “visually” recognize and classify
the time series. One type of time series recognition in speech
and audio has been well studied. Researchers have achieved
success using combinations of HMMs with acoustic mod-
els based on Gaussian Mixture models (GMMs) (Reynolds
and Rose 1995; Leggetter and Woodland 1995). An alterna-
tive approach is to use a deep neural networks to produce
the posterior probabilities over HMM states. Deep learn-
ing has become increasingly popular since the introduc-
tion of effective ways to train multiple hidden layers (Hin-
ton, Osindero, and Teh 2006) and has been proposed as a
replacement for GMMs to model acoustic data in speech
recognition tasks (Mohamed, Dahl, and Hinton 2012). These
Deep Neural Network - Hidden Markov Model hybrid sys-
tems (DNN-HMM) achieved remarkable performance in a
variety of speech recognition tasks (Hinton et al. 2012;
Deng, Hinton, and Kingsbury 2013; Deng et al. 2013).
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Such success stems from learning distributed representa-
tions via deeply layered structure and unsupervised pretrain-
ing by stacking single layer Restricted Boltzmann Machines
(RBM).

Another deep learning architecture used in computer vi-
sion is convolutional neural networks (CNN) (LeCun et al.
1998). CNNs exploit translational invariance within their
structures by extracting features through receptive fields
(Hubel and Wiesel 1962) and learn with weight shar-
ing, becoming the state-of-the-art approach in various im-
age recognition and computer vision tasks (Lawrence et
al. 1997; Krizhevsky, Sutskever, and Hinton 2012; Le-
Cun, Kavukcuoglu, and Farabet 2010). Since unsupervised
pretraining has been shown to improve performance (Er-
han et al. 2010), sparse coding and Topographic Indepen-
dent Component Analysis (TICA) are integrated as unsu-
pervised pretraining approaches to learn more diverse fea-
tures with complex invariances (Kavukcuoglu et al. 2010;
Ngiam et al. 2010).

CNNs were proposed for speech processing to be invari-
ant to shifts in time and frequency by LeCun and Ben-
gio. Recently, CNNs have been shown to further improve
hybrid model performance by applying convolution and
max-pooling in the frequency domain on the TIMIT phone
recognition task (Abdel-Hamid et al. 2012). A heteroge-
neous pooling approach proved to be beneficial for train-
ing acoustic invariance in (Deng, Abdel-Hamid, and Yu
2013). Further exploration with limited weight sharing and
a weighted softmax pooling layer has been proposed to op-
timize CNN structures for speech recognition tasks (Abdel-
Hamid, Deng, and Yu 2013).

Except for audio and speech data, relatively little work
has explored feature learning in the context of typical time
series analysis tasks with current deep learning architec-
tures. (Zheng et al. 2014) explores supervised feature learn-
ing with CNNs to classify multi-channel time series with
two datasets. They extracted subsequences with sliding win-
dows and compared their results to Dynamic Time Warping
(DTW) with a 1-Nearest-Neighbor classifier (1NN-DTW).
Our motivation is to explore a novel framework to encode
time series as images and thus to take advantage of the
success of deep learning architectures in computer vision
to learn features and identify structure in time series. Un-
like speech recognition systems in which acoustic/speech



data input is typically represented by concatenating Mel-
frequency cepstral coefficients (MFCCs) or perceptual lin-
ear predictive coefficient (PLPs) (Hermansky 1990), typical
time series data are not likely to benefit from transformations
typically applied to speech or acoustic data.

In this paper, we present two new representations for en-
coding time series as images that we call them Gramian An-
gular Field (GAF) and the Markov Transition Field (MTF).
We select the same twelve “hard” time series dataset used
by Oates et al., and applied deep Tiled Convolutional Neural
Networks (Tiled CNN) with a pretraining stage that exploits
local orthogonality by Topographic ICA (Ngiam et al. 2010)
to “visually” represent the time series. We report our clas-
sification performance both on GAF and MTF separately,
and GAF-MTF which resulted from combining GAF and
MTF representations into a single image. By comparing our
results with five previous and current state-of-the-art hand-
crafted representation and classification methods, we show
that our approach in practice achieves competitive perfor-
mance with the state of the art while exploring a relatively
small parameter space. We also find that our Tiled CNN
based deep learning method works well with small time se-
ries datasets, while the traditional CNN may not work well
on such small datasets (Zheng et al. 2014). In addition to ex-
ploring the high level features learned by Tiled CNNs, we
provide an in-depth analysis in terms of the duality between
time series and images within our frameworks that more pre-
cisely identifies the reasons why our approaches work.

Encoding Time Series to Images
We first introduce our two frameworks for encoding time se-
ries as images. The first type of image is a Gramian Angular
field (GAF), in which we represent time series in a polar co-
ordinate system instead of the typical Cartesian coordinates.
In the Gramian matrix, each element is actually the cosine of
the summation of angles. Inspired by previous work on the
duality between time series and complex networks (Cam-
panharo et al. 2011), the main idea of the second framework,
the Markov Transition Field (MTF), is to build the Markov
matrix of quantile bins after discretization and encode the
dynamic transition probability in a quasi-Gramian matrix.

Gramian Angular Field
Given a time series X = {x1, x2, ..., xn} of n real-valued
observations, we rescale X so that all values fall in the in-
terval [−1, 1]:

x̃i =
(xi −max(X) + (xi −min(X))

max(X)−min(X)
(1)

Thus we can represent the rescaled time series X̃ in polar
coordinates by encoding the value as the angular cosine and
time stamp as the radius with the equation below:{

φ = arccos (x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃
r = ti

N , ti ∈ N (2)

In the equation above, ti is the time stamp and N is a
constant factor to regularize the span of the polar coordi-
nate system. This polar coordinate based representation is a
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Figure 1: Illustration of the proposed encoding map of
Gramian Angular Field. X is a sequence of typical time se-
ries in dataset ’SwedishLeaf’. After X is rescaled by eq. (1)
and smoothed by PAA optionally, we transform it into polar
coordinate system by eq. (2) and finally calculate its GAF
image with eq. (4). In this example, we build GAF with-
out PAA smoothing, so the GAF has a high resolution of
128× 128.

novel way to understand time series. As time increases, cor-
responding values warp among different angular points on
the spanning circles, like water rippling. The encoding map
of equation 2 has two important properties. First, it is bijec-
tive as cos(φ) is monotonic when φ ∈ [0, π]. Given a time
series, the proposed map produces one and only one result in
the polar coordinate system with a unique inverse function.
Second, as opposed to Cartesian coordinates, polar coordi-
nates preserve absolute temporal relations. In Cartesian co-
ordinates, the area is defined by Si,j =

∫ x(j)

x(i) f(x(t))dx(t),
we have Si,i+k = Sj,j+k if f(x(t)) has the same values
on [i, i + k] and [j, j + k]. However, in polar coordinates,
if the area is defined as S′i,j =

∫ φ(j)
φ(i)

r[φ(t)]2d(φ(t)), then
S′i,i+k 6= S′j,j+k. That is, the corresponding area from time
stamp i to time stamp j is not only dependent on the time
interval |i− j|, but also determined by the absolute value of
i and j. We will discuss this in more detail in another work.

After transforming the rescaled time series into the po-
lar coordinate system, we can easily exploit the angular per-
spective by considering the trigonometric sum between each
point to identify the temporal correlation within different
time intervals. The GAF is defined as follows:

G =


cos(φ1 + φ1) · · · cos(φ1 + φn)
cos(φ2 + φ1) · · · cos(φ2 + φn)

...
. . .

...
cos(φn + φ1) · · · cos(φn + φn)

 (3)

= X̃ ′ · X̃ −
√
I − X̃2

′
·
√
I − X̃2 (4)

I is the unit row vector [1, 1, ..., 1]. After transforming to
the polar coordinate system, we take time series at each time
step as a 1-D metric space. By defining the inner product
< x, y >= x · y −

√
1− x2 ·

√
1− y2, G is a Gramian

matrix:




< x̃1, x̃1 > · · · < x̃1, x̃n >
< x̃2, x̃1 > · · · < x̃2, x̃n >

...
. . .

...
< x̃n, x̃1 > · · · < x̃n, x̃n >

 (5)

The GAF has several advantages. First, it provides a way
to preserve the temporal dependency, since time increases as
the position moves from top-left to bottom-right. The GAF
contains temporal correlations because G(i,j||i−j|=k) repre-
sents the relative correlation by superposition of directions
with respect to time interval k. The main diagonal Gi,i is
the special case when k = 0, which contains the original
value/angular information. With the main diagonal, we will
approximately reconstruct the time series from the high level
features learned by the deep neural network. However, the
GAF is large because the size of Gramian matrix is n × n
when the length of the raw time series is n. To reduce the
size of the GAF, we apply Piecewise Aggregation Approxi-
mation (Keogh and Pazzani 2000) to smooth the time series
and while keeping trends. The full procedure for generating
the GAF is illustrated in Figure 1.

Markov Transition Field
We propose a framework similar to (Campanharo et al.
2011) for encoding dynamical transition statistics, but we
extend that idea by representing the Markov transition prob-
abilities sequentially to preserve information in the time do-
main.

Given a time series X , we identify its Q quantile bins and
assign each xi to the corresponding bins qj (j ∈ [1, Q]).
Thus we construct a Q × Q weighted adjacency matrix W
by counting transitions among quantile bins in the manner of
a first-order Markov chain along the time axis. wi,j is given
by the frequency with which a point in the quantile qj is fol-
lowed by a point in the quantile qi. After normalization by∑
j wij = 1, W is the Markov transition matrix. It is insen-

sitive to the distribution of X and temporal dependency on
time steps ti. However, getting rid of the temporal depen-
dency results in too much information loss in matrix W . To
overcome this drawback, we define the Markov Transition
Field (MTF) as follows:

M =


wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj
wij|x2∈qi,x1∈qj · · · wij|x2∈qi,xn∈qj

...
. . .

...
wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj

 (6)

We build a Q × Q Markov transition matrix (say, W )
by dividing the data (magnitude) into Q quantile bins. The
quantile bins that contain the data at time stamp i and j (tem-
poral axis) are qi and qj (q ∈ [1, Q]). Mij in MTF denotes
the transition probability of qi → qj . That is, we spread
out matrix W which contains the transition probability on
the magnitude axis into the MTF matrix by considering the
temporal positions.

By assigning the probability from the quantile at time step
i to the quantile at time step j at each pixel Mij , the MTF
M actually encodes the multi-span transition probabilities
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Figure 2: Illustration of the proposed encoding map of
Markov Transition Field. X is a sequence of typical time
series in dataset ’ECG’. X is firstly discretized into Q quan-
tile bins. Then we calculate its Markov Transition MatrixW
and finally build its MTF with eq. (6). In addition, we re-
duce the image size from 96 × 96 to 48 × 48 by averaging
the pixels in each non-overlapping 2× 2 patch.

of the time series. Mi,j||i−j|=k denotes the transition prob-
ability between the points with time interval k. For exam-
ple, Mij|j−i=1 illustrates the transition process along the
time axis with a skip step. The main diagonal Mii, which
is a special case when k = 0 captures the probability from
each quantile to itself (the self-transition probability) at time
step i. To make the image size manageable and computation
more efficient, we reduce the MTF size by averaging the pix-
els in each non-overlapping m ×m patch with the blurring
kernel { 1

m2 }m×m. That is, we aggregate the transition prob-
abilities in each subsequence of length m together. Figure 2
shows the procedure to encode time series to MTF.

Tiled Convolutional Neural Networks
Tiled Convolutional Neural Networks (Ngiam et al. 2010)
are a variation of Convolutional Neural Networks that use
tiles and multiple feature maps to learn invariant features.
Tiles are parameterized by a tile size k to control the dis-
tance over which weights are shared. By producing multi-
ple feature maps, Tiled CNNs learn overcomplete represen-
tations through unsupervised pretraining with Topographic
ICA (TICA).

A typical TICA network is actually a double-stage op-
timization procedure with squares and square root nonlin-
earities in each stage, respectively. In the first stage, the
weight matrix W is learned while the matrix V is hard-
coded to represent the topographic structure of units. More
precisely, given a sequence of inputs {xh}, the activa-
tion of each unit in the second stage is fi(x(h);W,V ) =√∑p

k=1 Vik(
∑q
j=1Wkjx

(h)
j )2. TICA learns the weight ma-

trix W in the second stage by solving the following:

minimize
W

n∑
h=1

p∑
i=1

fi(x
(h);W,V )

subject to WWT = I

(7)
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Figure 3: Structure of the tiled convolutional neural network.
We fix the size of receptive field to 8 × 8 in the first convo-
lutional layer and 3 × 3 in the second convolutional layer.
Each TICA pooling layer pools over a block of 3 × 3 input
units in the previous layer without wraparound the boarders
to optimize for sparsity of the pooling units. The number of
pooling units in each map is exactly the same as the number
of input units. The last layer is a linear SVM for classifica-
tion. We construct this network by stacking two Tiled CNNs,
each with 6 maps (l = 6) and tiling size k = 2.

Above, W ∈ Rp×q and V ∈ Rp×p where p is the number
of hidden units in a layer and q is the size of the input. V is
a logical matrix (Vij = 1 or 0) that encodes the topographic
structure of the hidden units by a contiguous 3 × 3 block.
The orthogonality constraint WWT = I provides diversity
among learned features.

Neither GAF nor MTF images are natural images; they
have no natural concepts such as “edges” and “angles”.
Thus, we propose to exploit the benefits of unsupervised pre-
training with TICA to learn many diverse features with local
orthogonality. In addition, Ngiam et al. empirically demon-
strate that tiled CNNs perform well with limited labeled data
because the partial weight tying requires fewer parameters
and reduces the need for a large amount of labeled data. Our
data from the UCR Time Series Repository (Keogh et al.
2011) tends to have few instances (e.g., the “yoga” dataset
has 300 labeled instance in the training set and 3000 unla-
beled instance in the test set), tiled CNNs are suitable for our
learning task.

Typically, tiled CNNs are trained with two hyperparam-
eters, the tiling size k and the number of feature maps l.
In our experiments, we directly fixed the network structures
without tuning these hyperparameters in loops for several
reasons. First, our goal is to explore the expressive power of
the high level features learned from GAF and MTF images.
We have already achieved competitive results with the de-
fault deep network structures that Ngiam et al. used for im-
age classification on the NORB image classification bench-
mark. Although tuning the parameters will surely enhance
performance, doing so may cloud our understanding of the
power of the representation. Another consideration is com-
putational efficiency. All of the experiments on the 12 “hard”
datasets could be done in one day on a laptop with an In-
tel i7-3630QM CPU and 8GB of memory (our experimental

Table 1: Tiled CNN error rate on training set and test set
DATASET GAF MTF

TRAIN TEST TRAIN TEST
50words 0.338 0.310 0.442 0.426

adiac 0.321 0.284 0.638 0.665
beef 0.633 0.4 0.533 0.233

coffee 0 0 0 0
ECG200 0.16 0.11 0.15 0.21

faceall 0.121 0.244 0.102 0.259
lighting2 0.2 0.18 0.167 0.361
lighting7 0.329 0.397 0.386 0.411

oliveoil 0.2 0.2 0.033 0.3
OSULeaf 0.415 0.463 0.43 0.483

SwedishLeaf 0.134 0.104 0.206 0.176
yoga 0.183 0.177 0.193 0.243

platform). Thus, the results in this paper are a preliminary
lower bound on the potential best performance. Thoroughly
exploring the deep network structures and parameters will
be addressed in future work. The structure and parameters
of the tiled CNN used in this paper are illustrated in Figure
3.

Classifying Time Series Using GAF/MTF
We apply Tiled CNNs to classify using GAF and MTF rep-
resentation on twelve tough datasets, on which the classifi-
cation error rate is above 0.1 with the state-of-the-art SAX-
BoP approach (Lin, Khade, and Li 2012; Oates et al. 2012).
More detailed statistics are summarized in Table 2. The
datasets are pre-split into training and testing sets for ex-
perimental comparisons. For each dataset, the table gives its
name, the number of classes, the number of training and test
instances, and the length of the individual time series.

Experimental Setting
In our experiments, the size of the GAF image is regulated
by the the number of PAA bins SGAF . Given a time se-
ries X of size n, we divide the time series into SGAF ad-
jacent, non-overlapping windows along the time axis and
extract the means of each bin. This enables us to construct
the smaller GAF matrix GSGAF×SGAF

. MTF requires the
time series to be discretized into Q quantile bins to calculate
the Q × Q Markov transition matrix, from which we con-
struct the raw MTF image Mn×n afterwards. Before classi-
fication, we shrink the MTF image size to SMTF × SMTF

by the blurring kernel { 1
m2 }m×m where m = d n

SMTF
e. The

Tiled CNN is trained with image size {SGAF , SMTF } ∈
{16, 24, 32, 40, 48} and quantile size Q ∈ {8, 16, 32, 64}.
At the last layer of the Tiled CNN, we use a linear soft mar-
gin SVM (Fan et al. 2008) and select C by 5-fold cross val-
idation over {10−4, 10−3, . . . , 104} on the training set.

For each input of image size SGAF or SMTF and quan-
tile size Q, we pretrain the Tiled CNN with the full unla-
beled dataset (both training and test set) to learn the initial
weightsW through TICA. Then we train the SVM at the last
layer by selecting the penalty factor C with cross validation.



Table 2: Summary statistics of standard dataset and comparative results
DATASET CLASS TRAIN TEST LENGTH 1NN- 1NN- FAST BOP SAX- GAF-

EUCLIDEAN DTW SHAPELET VSM MTF

50words 50 450 455 270 0.369 0.242 0.4429 0.466 N/A 0.284
Adiac 37 390 391 176 0.389 0.391 0.514 0.432 0.381 0.307

Beef 5 30 30 470 0.467 0.467 0.447 0.433 0.033 0.3
Coffee 2 28 28 286 0.25 0.18 0.067 0.036 0 0

ECG200 2 100 100 96 0.12 0.23 0.227 0.14 0.14 0.08
FaceAll 14 560 1,690 131 0.286 0.192 0.402 0.219 0.207 0.223

Lightning2 2 60 61 637 0.246 0.131 0.295 0.164 0.196 0.18
Lightning7 7 70 73 319 0.425 0.274 0.403 0.466 0.301 0.397

OliveOil 4 30 30 570 0.133 0.133 0.213 0.133 0.1 0.167
OSULeaf 6 200 242 427 0.483 0.409 0.359 0.236 0.107 0.446

SwedishLeaf 15 500 625 128 0.213 0.21 0.27 0.198 0.251 0.093
Yoga 2 300 3,000 426 0.17 0.164 0.249 0.17 0.164 0.16

Finally, we classify the test set using the optimal hyperpa-
rameters {S,Q,C} with the lowest error rate on the training
set. If two or more models tie, we prefer the larger S and Q
because larger S helps preserve more information through
the PAA procedure and larger Q encodes the dynamic tran-
sition statistics with more detail. Our model selection ap-
proach provides generalization without being overly expen-
sive computationally.

Results and Discussion
We use Tiled CNNs to classify GAF and MTF representa-
tions separately on the 12 datasets. The training and test er-
ror rates are shown in Table 1. Generally, our approach is
not prone to overfitting as seen by the relatively small differ-
ence between training and test set errors. One exception is
the Olive Oil dataset with the MTF approach where the test
error is significantly higher.

In addition to the risk of potential overfitting, MTF has
generally higher error rates than GAF. This is most likely be-
cause of uncertainty in the inverse image of MTF. Note that
the encoding function from time series to GAF and MTF are
both surjective. The map functions of GAF and MTF will
each produce only one image with fixed S and Q for each
given time series X . Because they are both surjective map-
ping functions, the inverse image of both mapping functions
is not fixed. As shown in a later section, we can approx-
imately reconstruct the raw time series from GAF, but it is
very hard to even roughly recover the signal from MTF. GAF
has smaller uncertainty in the inverse image of its mapping
function because such randomness only comes from the am-
biguity of cos(φ) when φ ∈ [0, 2π]. MTF, on the other hand,
has a much larger inverse image space, which results in large
variation when we try to recover the signal. Although MTF
encodes the transition dynamics which are important fea-
tures of time series, such features seem not to be sufficient
for recognition/classification tasks.

Note that at each pixel, Gij , denotes the superstition of
the directions at ti and tj , Mij is the transition probability
from quantile at ti to quantile at tj . GAF encodes static in-
formation while MTF depicts information about dynamics.
From this point of view, we consider them as two “orthogo-

nal” channels, like different colors in the RGB image space.
Thus, we can combine GAF and MTF images of the same
size (i.e. SGAF = SMTF ) to construct a double-channel im-
age (GAF-MTF). Since GAF-MTF combines both the static
and dynamic statistics embedded in raw time series, we posit
that it will be able to enhance classification performance. In
the next experiment, we pretrain and train the Tiled CNN
on the compound GAF-MTF images. Then, we report the
classification error rate on test sets.

Table 2 compares the classification error rate of our ap-
proach with previously published performance results of
five competing methods: two state-of-the-art 1NN classifiers
based on Euclidean distance and DTW, the recently pro-
posed Fast-Shapelets based classifier (Rakthanmanon and
Keogh 2013), the classifier based on Bag-of-Patterns (BoP)
(Lin, Khade, and Li 2012; Oates et al. 2012) and the most re-
cent SAX-VSM approach (Senin and Malinchik 2013). Our
approach outperforms 1NN-Euclidean, fast-shapelets, and
BoP, and is competitive with 1NN-DTW and SAX-VSM.

In addition, by comparing the results between Table 2 and
Table 1, we verified our assumption that combined GAF-
MTF images have better expressive power than GAF or
MTF alone for classification. GAF-MTF achieves the lower
test error rate on ten datasets out of twelve (except for the
dataset Adiac and Beef). On the Olive Oil dataset, the train-
ing error rate is 6.67% and the test error rate is 16.67%. This
demonstrates that the integration of both types of images
into one compound image decreases the risk of overfitting
as well as enhancing the overall classification accuracy.

Analysis on Features and Weights Learned
through Tiled CNNs

In contrast to the cases in which the CNN is applied in natu-
ral image recognition tasks, neither GAF nor MTF has nat-
ural interpretations of visual concepts like “edges” or “an-
gles”. In this section we analyze the features and weights
learned through Tiled CNNs to explain why our approach
works.

As mentioned earlier, the mapping function from time se-
ries to GAF is surjective and the uncertainty in its inverse
image comes from the ambiguity of the cos(φ) when φ ∈



Figure 4: (a) Original GAF and its six learned feature maps
before the SVM layer in Tiled CNN (top left), and (b) raw
time series and approximate reconstructions based on the
main diagonal of six feature maps (top right) on ’50Words’
dataset; (c) Original MTF and its six learned feature maps
before the SVM layer in Tiled CNN (bottom left), and (d)
curve of self-transition probability along time axis (main
diagonal of MTF) and approximate reconstructions based
on the main diagonal of six feature maps (bottom right) on
”SwedishLeaf” dataset.

[0, 2π]. The main diagonal of GAF, i.e. {Gii} = {cos(2φi)}
allows us to approximately reconstruct the original time se-
ries, ignoring the signs by

cos(φ) =

√
cos(2φ) + 1

2
(8)

MTF has much larger uncertainty in its inverse image,
making it hard to reconstruct the raw data from MTF alone.
However, the diagonal {Mij||i−j|=k} represents the transi-
tion probability among the quantiles in temporal order con-
sidering the time interval k. We construct the self-transition
probability along the time axis from the main diagonal of
MTF like we do for GAF. Although such reconstructions
less accurately capture the morphology of the raw time se-
ries, they provide another perspective of how Tiled CNNs
capture the transition dynamics embedded in MTF.

Figure 4 illustrates the reconstruction results from six fea-
ture maps learned before the last SVM layer on GAF and
MTF. The Tiled CNN extracts the color patch, which is es-
sentially a moving average that enhances several receptive
fields within the nonlinear units by different trained weights.
It is not a simple moving average but the synthetic integra-
tion by considering the 2D temporal dependencies among
different time intervals, which is a benefit from the Gramian
matrix structure that helps preserve the temporal informa-
tion. By observing the rough orthogonal reconstruction from
each layer of the feature maps, we can clearly observe that
the tiled CNN can extract the multi-frequency dependen-
cies through the convolution and pooling architecture on the
GAF and MTF images to preserve the trend while address-
ing more details in different subphases. As shown in Figure
4(b) and 4(d), the high-leveled feature maps learned by the
Tiled CNN are equivalent to a multi-frequency approximator
of the original curve.

Figure 5: learned sparse weights W for the last SVM layer
in Tiled CNN (left) and its orthogonality constraint by
WWT = I (right).

Figure 5 demonstrates the learned sparse weight matrix
W with the constraint WWT = I , which makes effective
use of local orthogonality. The TICA pretraining provides
the built-in advantage that the function w.r.t the parameter
space is not likely to be ill-conditioned as WWT = 1. As
shown in Figure 5 (right), the weight matrix W is quasi-
orthogonal and approaching 0 without very large magnitude.
This implies that the condition number of W approaches 1
helps the system to be well-conditioned.

Conclusions and Future Work
We created a pipeline for converting time series data into
novel representations, GAF and MTF images, and extracted
high-level features from these using Tiled CNN. The fea-
tures were subsequently used for classification. We demon-
strated that our approach yields competitive results when
compared to state-of-the-art methods when searching a rel-
atively small parameter space. We found that GAF-MTF
multi-channel images are scalable to larger numbers of
quasi-orthogonal features that yield more comprehensive
images. Our analysis of high-level features learned from
Tiled CNN suggested that Tiled CNN works like a multi-
frequency moving average that benefits from the 2D tempo-
ral dependency that is preserved by Gramian matrix.

Important future work will involve applying our method
to massive amounts of data and searching in a more com-
plete parameter space to solve the real world problems. We
are also quite interested in how different deep learning ar-
chitectures perform on the GAF and MTF images. Another
interesting future work is to model time series through GAF
and MTF images. We aim to apply learned time series mod-
els in regression/imputation and anomaly detection tasks. To
extend our methods to the streaming data, we suppose to
design the online learning approach with recurrent network
structures.
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