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Abstract—Standard Symbolic Aggregation approXimation
(SAX) is at the core of many effective time series data mining
algorithms. Its combination with Bag-of-Patterns (BoP) has
become the standard approach with state-of-the-art performance
on standard datasets. However, standard SAX with the BoP rep-
resentation might neglect internal temporal correlation embedded
in the raw data. In this paper, we proposed time warping SAX,
which extends the standard SAX with time delay embedding
vector approaches to account for temporal correlations. We test
time warping SAX with the BoP representation on 12 benchmark
datasets from the UCR Time Series Classification/Clustering
Collection. On 9 datasets, time warping SAX overtakes the state-
of-the-art performance of the standard SAX. To validate our
methods in real world applications, a new dataset of vital signs
data collected from patients who may require blood transfusion
in the next 6 hours was tested. All the results demonstrate that,
by considering the temporal internal correlation, time warping
SAX combined with BoP improves classification performance.

I. INTRODUCTION

Time series data is ubiquitous in many real world areas, such
as health care, finance, geography, information technology,
etc. However, it suffers from high dimensionality and noise.
As one type of the successful techniques to discretize and
reformulate raw time series data, symbolic time series analysis
has been used in many different application areas to identify
temporal patterns [1]. Aligned Cluster Analysis (ACA) was
introduced as an unsupervised approach to cluster the temporal
patterns on the human motion data [2]. It is an extension
of kernel k-means clustering but requires significant com-
putational capacity. Persist is an unsupervised discretization
method to maximize the persistence measurement of each
symbol [3]. The Piecewise Aggregation Approximation (PAA)
method was proposed by Keogh [4], which then upgrades to
Symbolic Aggregation approXimation (SAX) [5]. In SAX,
each aggregation value after the PAA process is mapped
into equiprobable intervals according to a standard normal
distribution to produce symbolic representations. SAX has
become a common representation method due to its simplicity
and effectiveness on various types of data mining tasks [6].

SAX forms the PAA in temporal order using a sliding
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window. Such representation is effective in several data mining
tasks such as indexing [6] and visualization [7]. As one of
the effective features for classification, a bag-of-words makes
use of SAX words to encode non-linearity and benefits from
invariance to rotations [8]. Lin et al. also reported the state-of-
the-art results using a One-Nearest-Neighbor classifier (INN)

on UCR Time Series Classification/Clustering databases [9].

Oates et al. applied SAX and BoP to predict outcomes for trau-

matic brain injury patients [10] and explored representation

diversity by ensemble voting to further improve classification

performance [11].

While standard SAX with BoP obtains the state-of-the-art
performance on benchmark datasets and real world applica-
tions, we hypothesize that if we could improve SAX by cap-
turing more temporal information in the BoP representation.
Our work is inspired by two observations. First, correlation is
common in time series. Statistical time series analysis utilizes
AutoCorrelation Function (ACF) and Partial AutoCorrelation
Function (PACF) to interpret the internal linear correlations
in ARIMA models [12]. We propose to explicitly extract the
implicit linear correlation in time series and thus to help reveal
the intrinsic statistical properties to potentially improve the
expressive capacity.

Another motivation is based on the observation that BoP
extracts local patterns, regardless of where they occur within
time series. Standard SAX keeps the temporal ordering infor-
mation while this information might be ignored after building
a BoP. We attempt to seal the temporal correlation in the
bags by borrowing the concept of time embedding vector from
dynamic systems to overcome the loss of information. In this
paper, our contributions are:

e We extend standard SAX with a time warping procedure
on three granularity levels, i.e. items, bins and windows, to
capture the temporal information within the time series.

e After building a BoP from time warping SAX words, we
compare its classification performance with standard SAX
on 12 benchmark datasets and a new real world dataset from
patient vital signs. Our experiments justify our assumption
that capturing temporal correlation within SAX words and



BoP helps improve the expressive capacity and improve
classification accuracy.
II. MOTIVATION
A. Internal Linear Correlations Embedded in Time Series

For a stationary process Z = 21, Zs, ...,
between Z; and Z,j is defined as:

- E[(Zt
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The correlation between Z; and Z; is:
cov(Zy, Ziit)

\/var(Zt)\/var(Zt+k)

As a function of k, py is called the AutoCorrelation Func-
tion (ACF). It represents the correlation between Z; and Z;
at time lag k.

If we remove the mutual linear dependency on the in-
tervening variables Zyi1, Zy49,..., Z1+k—1, the conditional
correlation is given by:

Ve = COU(Zt, Zt+k)

Pr = 2)

Ziyk—1) (3)

The resulting value is called the Partial AutoCorrelation
Function (PACF) in time series analysis.

ACF and PACF helps discover the internal correlation and
identify the order of ARIMA model in statistical time series
analysis [12]. Time series have intrinsic correlations even
though sometimes we observe no obvious periodic trends. As
shown in Figure 1, although there is no obvious periodic trend
in the raw data, the ACF and PACF values show significant
linear dependencies at different time lags. In this example, the
raw data needs a first order or even higher order differencing to
reveal the essential linear temporal dependency in a stationary
time series.
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UCR ECG
3 Raw ., ACF 1o PACF
|10
08 1 o7 \ J
106 T O ey 'l qknll W t\|I||f|qu'n
0.4 ]
0.2 4 =5F
0.0 B N
w1 10l
1o W |

_3 1 1 1 1 04 1 1 1 1 15 L L L L
0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

Fig. 1. Plots of (a) raw data (left), (b) ACF (middle) and (c) PACF (right)
on ECG dataset from UCR Time Series Classification/Clustering database.

Correlation revealed by ACF and PACF are more general
than periodicity and is very commonly observed in time series
data. A number of ACF and PACF plots from UCR time series
databases with various type of data show similar phenomena
as seen in Figure 1.

In Figure 2, standard SAX word shows their intrinsic
property of preserving the major internal correlation embedded
in raw data. This is because standard SAX builds PAA bins
and slides windows sequentially in temporal order.Sequential
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Fig. 2. Plots of (a) raw data ACF (left up), (b) SAX word ACF (right
up) and (c) raw data PACF (left bottom) and (d) SAX word PACF (right
bottom)on ECG datasets from UCR Time Series Classification/Clustering
database. Standard SAX preserves the temporal correlation, but this advantage
might be ignored in BoP representations.

information in temporal order is one of the essential properties
of time series, standard SAX works quite well on tasks like
similarity evaluation and time series indexing. However, this
advantage might be lost in the BoP representation. We discuss
this in more detail in the next section.

B. Order Invariance in BoP Representation

A Bag-of-Patterns (BoP) is a histogram-based representation
for time series data, similar to the bag-of-words approach
that is widely accepted by the natural language processing
and information retrieval communities. Given a time series
of length L, a BoP representation is constructed by sliding a
window of length n (n << L) to map each subsequence of
length n into a SAX word. Then the L — n + 1 subsequence
is represented as a histogram of word counts.
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Fig. 3. PAA and SAX procedure for ECG data. (a) Time series are partitioned
into two windows and each window has two PAA bins (left). We exchange
the order of two windows in (b) (right), but the BoP patterns are same, i.e,
BC: 1, DA: 1

BoP can handle time series with varying length. It is
invariant to the shift of pattern locations by extracting local
structures regardless of where they occur. Nonetheless, the
standard SAX approach preserves the temporal order by
sliding windows sequentially. BoP runs the risk of losing this
temporal dependency due to its shift invariance. To clearly
state the problem, consider the toy example as shown in Figure
3. We partition the time series into two windows with two PAA
bins in each half (Figure 3(a)). Then we exchange the order
of the two windows as shown in Figure 3(b). Obviously, these
two time series have different temporal information from each
other, but they produce the same BoP.

The BoP reveals the higher level structures, its invariance
to shifts also allows rotation-invariant matching in shape
datasets. In the next section, we introduce time warping SAX
approaches. They capture the temporal correlation information



embedded in time series by taking advantage of the invariance
to shift and temporal order in BoP to generate more informa-
tive representations.

III. TIME WARPING SAX

In this section, we introduce three time warping SAX
approaches inspired by the idea of time delay embedding
vectors [13], [14]. They take advantage of the order-invariance
of BoP to capture temporal correlation information through
building words and bags with a time warping procedure.

Given a time series T = {¢1,ta,...,t1} of length L, a
sliding window of length n and a number of PAA w, the
standard SAX method partitions the time series into [£] — 1
equal-sized sliding windows %;,%;41, ..., t;4n—1. Each window
is then divided into w PAA bins. In time warping SAX, we
change the step size + = ¢ + 1 by ¢+ = ¢ + 7 to build the
new time warping sequence t;,%;yr, ..., titr(n—1)- The delay-
time embedding vector ¢;,¢;1+, ..., ;1 r(n—1) is used to embed
the time series into a higher dimensional space to reconstruct
the original state space vector. 7 is the delay time and n is
the embedding dimension. In the time warping procedure, T
has the same mechanism with the time lag k¥ in ACF and
PACF. The embedding dimension n is equivalent to the sliding
window size.

In this section, we will introduce two time warping SAX
approaches named Skipword and Skipbin. They correspond
to the different discretization granularity in standard SAX.
Moreover, we explore the effect of a skip step on sliding
window in standard SAX and call it the Skipwindow SAX
approach.

A. Skipword SAX

Skipword SAX applies the time warping approach to build
PAA bins. Because each corresponding SAX word is the
mean value of PAA bins, the idea of Skipword is to seal the
temporal correlations into single SAX word through delay-
time embedding vectors.

Consider a simple sequence 7' = {1,2,...,10} with delay
time 7 = 2, embedding dimension n = 6 and number of bins
w = 3. T is divided into three windows with three PAA bins
in each window as {13 |24 |35}, {68798 10}. After
calculating the mean values in the PAA bins, T is discretized
as {2 3 4}, {7 8 9}. For simplicity, we skip the Gaussian
mapping procedure in the following examples to map the
rounding of each PAA mean to its corresponding SAX word
with the dictionary {1: A, 2: B, ..., 26: Z}. Thus, we get the
BoP pattern BCD: 1, GHI: 1. Then the window slides forward
to generate more BoP patterns with the same loop. The over-
simplification here is only to facilitate the explanation of our
approaches. In our experiments, we process the data with the
full pipeline of standard SAX including the Gaussian mapping.

B. Skipbin SAX

Skipbin SAX applies time warping approaches to build the
sliding window instead of PAA bins. Each window is cut into
PAA bins following the standard SAX procedure. By enlarging

the granularity of temporal correlations, we expect different
embedding information to be sealed in BoP representations.

Consider the same sequence 7' = {1,2,...,10} with the
delay time 7 = 2, embedding dimension n = 5 and the number
of bins w = 3. We apply time warping on subsequence to build
two windows and partition each window into three PAA bins
{13579}, {24|68| 10}. After figuring out the mean
values in each PAA bins, T is discretized into {2 6 9} and
{3 7 10} with the BoP patterns BFI: 1, CGJ: 1. Then The
window slides forward to generate more BoP patterns in the
same way.

C. Skipwindow SAX

Skipwindow SAX approach is the same as standard
SAX. The only difference is the changing time steps
among each sliding windows. For the sequence T' =
{1,2,3,4,5,6,7,8,9,10}, we set time step ¢t = 5, window
length n = 5 and words number w = 3. The Skipwindow
SAX discretizes the sequence into {1 2|34 |5}, {6738
9 | 10}. No overlaps occurs in this example due to the large
skip size (¢ = 5). The final BoP patterns are BDE: 1, GIJ: 1.

D. Summarization and Discussion

By using time warping procedure based on delay-time
embedding vectors, time warping SAX approaches seal the
correlation information into different sizes of “bags”, i.e., PAA
bins and sliding windows. Skipword has smaller granularity
because each SAX word will contain temporal correlation
with different delay embedding vector parameters. Instead of
embedding the correlation into each single SAX word, the
Skipbin approach looks at larger temporal scales to encode
the correlation into the windows that contain several PAA
bins. Skipbin SAX words have longer memory than Skipword
SAX words because the temporal order is preserved in sliding
windows with larger scale than a single PAA bin. Skipwindow
SAX is a straight-forward extension of the standard SAX
approach with a larger parameter space as the time step ¢ will
change instead of fixing it at 1. We assume that Skipwindow
also captures some temporal dependency when building the
BoP representations. However, when the skip size increases,
the BoP discards more phases of the original time series and
results in more information loss.

Delay-time embedding is a powerful tool. In principle,
almost any delay time 7 and embedding dimension n works
when we need to analyze the correlation behavior of a complex
dynamical system if we have unlimited precise data. However,
choosing the embedding vector 7(n—1) is not trivial. We want
both 7 and and 7(n — 1) to be close to some characteristic
decorrelation time. One suggested principle is exactly the ACF
[15].

Note that if we tune the parameters of the three time
warping SAX approaches, the standard SAX has a chance to
be replicated. That is, standard SAX is a specific subset of
time warping SAX. While we take temporal correlation into
consideration, we also add one more dimension, the time delay
T in the parameter space. To avoid the “cheat” situation and



reveal the real impact of the internal correlation, we get rid of
the parameter intervals that will reduce time warping SAX to
the standard SAX.

IV. EXPERIMENTS AND RESULTS
A. Data

The benchmark datasets are from the UCR Time Series
Classification and Clustering home page [9]. We choose the
subsets for which the BoP error rate with standard SAX is
above 0.1. The error rate is the fraction of incorrectly classified
instances. For each dataset, the table below gives its name,
the number of classes and the length of the individual time
series. The datasets are pre-split into training and testing sets to
facilitate experimental comparisons. We also give the number
of training and test instances. The test error rate of the standard
SAX-BoP approach is directly taken from [11].

TABLE I

BENCHMARK TIME SERIES DATASETS AND SUMMARY

STATISTICS
Class  Train Test Length  Error Rate [11]
Coffee 2 28 28 286 0.1071
Oliveoil 4 30 30 570 0.1667
ECG200 2 100 100 96 0.22
Lighting2 2 60 61 637 0.2295
Lighting7 7 70 73 319 0.3973
Beef 5 30 30 470 0.4667
Adiac 37 390 391 176 0.3836
50words 50 450 455 270 0.4396
FaceAll 14 560 1690 131 0.2497
OSULeaf 6 200 242 427 0.3058
SwedishLeaf 15 500 625 128 0.2064
yoga 2 300 3000 426 0.1677

The second dataset is the patient vital signs signals (ECG
and PPG) collected from University of Maryland School of
Medicine. All patient data are anonymous in order to protect
patient privacy. 556 patient’s ECG and PPG data were col-
lected in 68 to 128 minutes at a 240 Hz sampling rate. Among
them, 237 patient’s vital signs data are less than 128 minutes
long and all the data is quite noisy. The label demonstrates if
the patient needed a blood transfusion for Packed Red Blood
Cell (pRBC) within 6 hours of admission. The vital signs time
series are preprocessed by filtering outliers and integrating the
means in each minute to reduce data size. Because the data
is highly skewed with only 17 positive instance, we down-
sampled 17 negative instance to rebuild a balanced dataset.

B. Experiment and Analysis

We construct BoPs for the datasets in Table I by looping
over the hyperparameters on the training set. Given a time
series of length m, we set n € {0.15m,0.16m, ...,0.36m}
aw € {2,4,6,8} and a € {3,4,...,10}. Moreover, the delay-
time 7 and skip time ¢ loops in {0.01m,0.03m, ...,0.15m}.
We classify the time series with each BoP on the training
set to select the optimal parameters with Leave-One-Out
Cross Validation (LOOCYV) for the test set. If two or more
representations tie, we choose the representation with the

smallest possible vocabulary size ¢ and delay-time 7. For
vital signs data, we apply LOOCYV to evaluate the classification
performance on the training set alone.

TABLE II
1NN ERROR RATE OF TIME WARPING SAX AND STANDARD SAX ON TEST
DATASETS
Dataset SAX  Skipword  Skipbin  Skipwindow
Coffee  0.1071 0.0357  0.0357 0.0357
Oliveoil  0.1667 0.1 0.1 0.1
ECG200 0.22 0.12 0.12 0.12
Lighting2 ~ 0.2295 0.2295  0.1475 0.1475
Lighting7  0.3973 0.2603  0.2466 0.3288
Beef  0.4667 0.4333 04 0.4667
Adiac  0.3836 0.5166  0.5141 0.5166
50words  0.4396 0.3867  0.3756 0.3978
FaceAll  0.2497 0.2438  0.2438 0.2349
OSULeaf  0.3058 0.3430  0.3347 0.3554
SwedishLeaf  0.2064 0.2400  0.2336 0.2496
yoga  0.1677 0.1670  0.1603 0.2017

Table II shows the LOOCYV error rate on test sets. Except for
”Adiac”, "OSULeaf” and “SwedishLeaf”, Skipbin and Skip-
word SAX methods outperform standard SAX. Skipwindow
SAX also demonstrates specific improvements, although it is
always worse than the Skipbin and Skipword approaches. Be-
cause Skipwindow is the direct extension of standard SAX with
a larger parameter space, the improvement seems ‘“obvious”
as it searches four parameters as opposed to three. However,
Skipwindow will discard more original data when time step
grow large (particularly when ¢ > w) and leads to significant
information loss.

Among these three time warping SAX approaches, Skipbin
shows better expressive capacity than the other two based on
the classification performance. This is most likely because
Skipbin SAX applies the time warping procedure to build
windows that contains several PAA bins. It takes advantage
of delay-time embedding vectors in capturing the temporal
correlation in the larger window but also preserves sequential
order of the subsequence within each PAA bin. With appro-
priate combinations of hyperparameters, Skipbin extracts the
temporal dependency as well as the sequential information to
learn more powerful BoP representations.

Skipword SAX Skipbin SAX
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Fig. 4. Illustration of Skipword (left) and Skipbin (right) SAX. Skipword
extracts the temporal correlation through using delay-time embedding vector
in each single word; Skipbin captures the linear correlation in each word and
preserves the sequential order in the PAA bins.

It is necessary to explore the representation diversity be-
tween time warping SAX and standard SAX approaches.
Different datasets will require different parameters to properly



TABLE III
BEST FOUR REPRESENTATIONS (n,w, a,7/t) BY ERROR RATE

FOR TWO DATASETS.

Dataset SAX Skipword Skipbin  Skipwindow
94,8,3,1 65,4,3,27 65, 4, 3, 27 95,4,3,3

SOwords 97,4,3,1 95,4,3,19 68, 4, 3, 27 86,4, 3,3
94,4,4,1 78,4,3,19 86,4, 3,3 90, 4, 3, 3

86,8,3,1 89,4,3,19 62, 4, 3, 27 97,4,3,3

70, 8,4, 1 48,2,8,3 48,2,10,3 48,2,10,3

Lighting7 70, 8, 3,1 51,4,5,3 73,2,10,41 57,2,10,3
51,2,7,1 90,4,7,3 57,2,10, 22 70,2,7,3

51,2,9,1 54,2,6,3 60,2, 10, 41 96, 2,5,3

>

demonstrate the expressive capacity and maximize the classi-
fication accuracy [11]. The different time warping procedures
in time warping SAX approaches result in the diverse BoP
patterns as illustrated in Figure 4.

A time warping SAX representation is determined by the
window size n, the number of words w, the alphabet size a
and the delay-time/skip step 7/t. Because various datasets and
different time warping approaches need specific combinations
of hyperparameters to learn appropriate BoPs, one would ex-
pect to observe significant representation diversity on different
SAX approaches and datasets. We also assume that we can find
some patterns in the representation diversities. Table III shows
four optimal representations with the best training error rate
on two datasets. The best representations for the ”50Words”
have the same word and alphabet sizes (4,3) on all time
warping SAX approaches. The Window length and delay-
time change respectively to learn the BoPs with significant
temporal correlations. The “Lighting7” dataset shows more
obvious diversity in the best representations, but Skipbin SAX
approach has the same word and alphabet sizes (2, 10), which
means it prefers short words and high alphabetical resolution
to build the BoP patterns. On these two datasets, the skip
step for Skipwindow SAX keeps on the lowest value (0.01m),
which is in accordance with our analysis that large skip step
brings much information loss. Thus Skipwindow SAX is trying
to avoid such information loss using small sliding steps.

Figure 5 shows the plots of training error rate on the
”50word” and “Lighting7” datasets with all representations
sorted in a ascending order over three time warping SAX
approaches. Although we observe slight difference among the
error rates of best representations for three time warping SAX
approaches in Table II, the error rate curve over all repre-
sentations show more details about the difference among time
warping approaches. Three time warping SAX have the similar
best performance, but the curve of Skipbin SAX stabilizes at
the lower horizon with more representations than Skipword
and Skipwindow. It implies that Skipbin SAX is muck likely to
have robust and better classification accuracy. On “Lighting7”,
Skipword SAX stays at the best error rate at the very beginning
but follows by a sharp slope where the classification accuracy
rapidly decreases. Through this sharp rising on error rate, the
curve leaps to the stable state where the representations show
significantly worse classification performance. This means

50word
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Fig. 5. Curve of test error rate for all representations of time warping SAX
by rank (the lowest error is 1) for the ”50word” and “Lighting7” datasets.

TABLE IV
ERROR RATE PREDICTING PATIENT OUTCOMES USING VITAL
SIGNS WITH DIFFERENT SAX APPROACHES

ECG PPG

Standard SAX  0.2353  0.2059
Skipbin SAX ~ 0.2059  0.1765
Skipword SAX ~ 0.2353  0.1765
Skipwindow SAX  0.1765  0.2353

that on some dataset, Skipword achieves good classification
performance but has a large variance and more significant
risk of overfitting. Skipwindow SAX always achieve medium
performance but with good robustness because the sloping
region for both datasets are smooth.

The next experiment explores the utility of time warping
SAX to predicting if the patient needs blood transfusion based
on their vital sign data. We use 1NN classifier and report their
best LOOCYV error rate in Table IV.

On ECG dataset, Skipword is equivalent to standard SAX
while Skipbin and Skipwindow SAX outperforms standard
SAX. On PPG data, Skipwindow approach is worse than stan-
dard SAX, but other two approaches both overtake standard
SAX with 82.35% classification accuracy. These results on real
world physiological data support our analysis that Skipbin and
Skipword SAX are more likely to have better classification
performance than standard SAX as they capture the temporal
correlation and take advantage of the shift-invariance of BoP.
Skipwindow approach is a natural extension based on standard
SAX, its performance might “cheatly” outperform its proto-
type if we can find the optimal parameters. Time warping SAX
has one more parameter (7 or t) which requires more effort
to tune the parameters. However, our approaches and results
make a strong suggestion to consider the linear or even non-
linear temporal correlations when building SAX words.



V. RELATED WORK

Since proposed in 2003, SAX and its derivatives have been
successfully applied in many different application areas to
identify temporal patterns. To mention a few, Koegh et al.
introduce the new problem of finding time series discords and
apply a SAX derivations to find the subsequences of a longer
time series that are maximally different to all the rest of the
time series subsequences [16]. Yankov et al. introduce a new
SAX-based algorithm to discover time series motifs which
are invariant to uniform scaling. They show that it produces
objectively superior results in several important domains [17].
Vector Space Model is combined with SAX (SAX-VSM)to
discover time series patterns and helps classification [18]. They
report the state-of-the-art classification performance on UCR
standard time series data set. In short, the SAX method has
become one of the de facto standard to discretize time series
and is at the core of many effective classification or indexing
algorithms.

Nonetheless, among a number of papers that explore the
application of SAX and its derivatives, no work has been
investigated to integrate BoP patterns and the SAX words with
linear temporal correlations. The time warping approach to
build SAX words in this paper is based on a few research
work about symbolic dynamics of time series. The research
on permutation entropy [13], [14] and fractal dimensions [15]
include details of delay-time embedding vectors. Oates et
al. apply SAX with bag-of-words to detect brain traumatic
injury patients [10] and explore the representation diversity via
ensembles of different BoP representations [11] also provide
us the analysis paradigm and clear logic map to analyze and
apply our approaches on physiological data.

VI. CONCLUSION

Motivated by the internal correlation embedded in time se-
ries and intrinsic property of BoP representations, we proposed
the time warping SAX to integrate the temporal correlation
when building SAX words and BoP representations. Exper-
imental results on 12 standard datasets showed the overall
improvements of the classification accuracy on standard SAX-
BoP approaches. We analyze the representation diversity of
different time warping SAX approaches. The Additional ex-
periments showed that time warping SAX approaches lead
to more accurate predictions of patient outcomes based on
high resolution vital signs data. Empirically, Skipbin SAX has
more robust and optimal classification performance as it has
less information loss than Skipwindow SAX and contains more
sequential information than Skipword SAX.

Future work will include exploring impact of nonlinear
correlation to build SAX word. Except for the internal corre-
lation within univariate time series, how to integrate the cross
correlation multivariate time series is also a worth direction.
In addition, choosing hyperparameters for time warping SAX
algorithm to obtain optimal representation with good general-
ization capacity is more time consuming than standard SAX.
We propose to utilize the heuristic search method to address
this issue.
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