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ABSTRACT

Title of Thesis: Calculating Representativeness of Geographic

Sites Across the World

Ashwinkumar Ganesan,

M.S. in Computer Science, 2012

Thesis directed by: Dr. Tim Oates,

Professor,

Department of Computer Science and

Electrical Engineering

GLOBE is a global correlation engine, a project to study the effects on Land

Change based on a set of parameters that include temperature, forest cover, hu-

man population, atmospheric parameters and many other variables. The aim of

this research is to understand, how a study or a set of studies of specific geo-

graphic areas is representative of other areas of the world. The generic form of

the question is, given a set of data points with a set of variables, how to determine

how much a selected subset of points represents the rest of the distribution.

The research aims to answer a set of questions which include the defini-

tion of representativeness of a geographical site and how the representativeness

can be computed. Researchers studying land change will dynamically select a

subset of variables which they would like to study. Hence the method devel-

oped not only computes representativeness, but does so in an efficient manner.

For this purpose, we apply dimension reduction techniques to reduce the size of

computation and analyze the effectiveness of using these techniques to calculate

representativeness.

Keywords: Principal Component Analysis (PCA), Dimension Reduction,

Representativeness, Land Change Science
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Chapter 1

INTRODUCTION

The study of environmental sciences and especially climate change has

grown in importance over the last two decades. Some reasons to study these

areas are to understand their effects on human populations and on natural re-

sources available on the planet. They encompass a host of issues that are related

to diverse areas, including ecology, government policies, public health and eco-

nomic policies [1]. Global climate change study attempts to understand (and

predict) how the climate evolves based on current and historical evidence. It

explores the change in climate occurring due to natural phenomenon and anthro-

pogenic reasons. Our effort is to find a way to globally utilize these studies by

measuring similarity.

1.1 Land Change Science & Globe

Land Change Science (LCS) is a part of global climate change research

and studies the effect of human activity on land and on the climate. As part

of LCS, studies of specific geographic locations are conducted across the entire

world. The locations where these studies are conducted are based on a number

of factors that are decided depending upon the goals of the study that could be

1
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social or ecological. Goals that are social could include understanding the nature

of human interaction with the environment and the impact of the change on

human lives. Ecological studies try to measure parameters such as deforestation

and its effect on the environment as a whole. The size or scale of a study could

be based on the amount of funds available or to perform a study for measurement

of global climate change (like an IPCC study) that can be used for making policy

[2]. These studies are conducted by scientists on-site or by remotely monitoring

these locations through stations that are constructed on the site.

Globe is a global correlation engine to study land change science [1]. It tries

to fulfil the basic requirement of providing the ability to generalize LCS studies.

It has multiple objectives which include constructing of an online social media

system to facilitate collaborative work between land change scientists, providing

a set of tools to analyse and generalize local observations to larger regions or the

entire globe, and constructing scientific workflows [1].

1.2 Motivation

Land change studies are expensive. Hence the main motivation is to provide

an understanding of how the conclusions of these studies can be generalized to

other parts of the world. The notion of how generalized the studies are can help

land change scientists to:

1. Reduce the number and cost of studies conducted in the future.

2. Select new locations in the world where studies have not been conducted.

3. Analyse existing studies in a different manner by showing a global pattern

of the distribution of a set of selected parameters.
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1.3 Representativeness

There are a set of parameters or variables whose information is available

for all parts of the world. They are the set of global variables. These variables

include potential vegetation, land utilized for agriculture, temperature, and many

others. Scientists studying land change select a case study or a set of case stud-

ies which have been conducted. They select the variables which represent the

environment in which the studies were conducted or the variables for which they

want to analyze the case study. To generalize the results of these studies, they

use these parameters to find other parts of the world that are similar. The rep-

resentativeness of a given set of case studies is defined as the extent to which

they cover the rest of the world. For example, consider a scientist analyzing the

Van Vliet Study [3] on trends in swidden cultivation. She would perform the

following steps

1. Create a collection of all the locations that are part of study.

2. Select this collection from Globe’s User Interface.

3. Select parameters such as %crops, %tree cover, temperature, Market Ac-

cess Index and Potential Vegetation as the meta-study uses these variables.

4. Compute representativeness for the collection. Display it on a world map

to show which other regions of the world are similar or to what extent the

rest of regions are dissimilar to the ones in the study.

1.4 Challenges & Contributions

The number of distinct geographical regions across the world into which

the world map can be divided is very large. Each region is has its own global
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variable information. There are a large number of dimensions which, coupled

with the number of sites, makes the representativeness computation expensive.

The users (scientists in this case) select a subset of variables in realtime. The

results for this calculation are to be provided in realtime. There are essentially

two challenges here:

1. To find a method to measure representativeness.

2. To provide an algorithm, to find a minimum set of new locations where

studies can be conducted so as to maximize representativeness for the se-

lected set of variables.

Our contribution in this thesis is to provide a mathematical formulation for

representativeness, reduction of computation time and increase in efficiency by

using a dimension reduction technique and providing a method to validate the

results of our selected locations. Dimension reduction techniques are required

since the number of dimensions is large and methods that use the original set

of dimensions, such as clustering, will not be able to perform computation in

realtime. The dimension reduction method we apply is Principal Component

Analysis (PCA). PCA is useful because it prioritizes dimensions with higher

variance. We show in this thesis how the algorithm can be used to select new

locations and the correlation between the geographic points in the original space

and single dimension PCA space. This correlation helps us measure the effec-

tiveness of PCA and selected locations. Representativeness is displayed in the

form of a Heat Map using Google Maps. The map has markers that show the

location where each case study was conducted.



Chapter 2

REPRESENTATIVENESS & RELATED WORK

This chapter defines what representativeness means, and explores various

methods that can been used to compute representativeness.

2.1 Representativeness

2.1.1 Definition

Representativeness describes how a data point or a set of data points can

be used to generalize to the rest of the data set. In case of the Globe project, a

data point refers to a specific region in the world where the study is conducted.

Consider a distribution of data points where

• D is the given dataset of points

• S is a sample set of points such that S ⊆ D

• H is a histogram based on D

• Bin(H,s) is the bin where the data value s falls in H

• P(H,i) is the height / probability of bin i in histogram H

• All unique bins are defined in a set B = {b|∀s∈Sb = bin(H,s)}

5
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We define representativeness R of a sample set S for a given global dataset D as

R(S|D) =
∑
b∈B

p(H, b) (2.1)

where 0 ≤ R(S | D) ≤ 1. When a sample set has higher representativeness, then

R reaches 1.

The definition of representativeness R is theorized for a dataset D which has

a single variable or attribute for each data point. The histogram for the dataset D

gives us the frequency of data points in each bin that is defined. Once we know

which data points fall in which bin and where points in sample set S lie in the

histogram, we know which data points are represented by S. These data points

are in set B that is the set of bins b where sample points in S lie (i.e., b ∈ B).

The data point x ∈ D is said to be represented by a sample point s ∈ S, when a

certain pre-defined criteria is fulfilled.

Thus representativeness can be explained as a fraction of the total number

of data points that fall within a predefined threshold criteria for atleast one of

the points in the sample set. All data points within the threshold are completely

represented by one of the sample points in S. If a data point falls within the

threshold criteria of multiple sample set points, then it is represented by the

sample set point where criteria is optimal. In Globe, representativeness shows

the fraction of the total land surface on earth that are similar to the locations

that are part of a case study and have been studied based on a specific set of

parameters.

If we use a multivariate dataset with m dimensions, then the criteria used

are modified to consider m dimensions. For example, if the criteria is based on
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Euclidean Distance, then distance in a single dimension would be

d = |(s - x)| (2.2)

where

• d is the distance

• s is a sample point such that s ∈ S

• x is a data point such that x ∈ D

The distance formula for m-dimensional data points would be

d =
√∑

i∈m
(si − xi)2 (2.3)

The distance between the sample point s ∈ S and x shows how close the

data point is to the sample point. As d → 0, the data point is considered to be

closer. Representation of a data point by a sample point is inversely proportional

to the distance. Hence, representation r is defined as

r(x|s) = |1− dx| (2.4)

r is thus a value between 0 and 1 (and maybe greater than 1 in some outlier

cases). A scale is created from 0 to 1 and the data points are assigned to each

section of the scale (forming histogram H). Representativeness R is taken as

the proportion of the total number of data points that are there in the first scale

between 0 and 1. This is because the representativeness provided in the definition

is for a binary scale where as represetativeness can be in degrees (like in the case

of a heat map explained in the next chapter).
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The histogram H can be of 2 types: equal probability and equal area as

shown in the diagram below where x is a single variable and p(x) is the probabil-

ity distribution function (pdf).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-2  0  2  4  6  8  10  12

p(
x)

x

FIG. 2.1. A histogram of a sample of data from a distribution in which bins

have equal area.
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FIG. 2.2. A histogram of a sample of data from a distribution in which bins

have equal empirical probability.

An equal area histogram is one where the data dimension is divided into

bins of equal size (Figure 2.1). Thus each bin contains the points that fall within

a certain range in the given dimension. Representativeness R in such a histogram

can be maximized by choosing mode points. An equal probability histogram is

where the number of points in each bin is equal. Hence the size or width of each

bin changes according to the density of the points (Figure 2.2). Since the bins

are equiprobable, points can be selected from any random bin to represent the

entire points in that bin.

2.1.2 Kernels

A kernel function is a function that maps a point onto a scale and is denoted

by K(s - d). In the case of a histogram, the kernel function implemented is a

step function. It is a set of bins whose points match the threshold criteria (like

maximum distance) such that any point in any of the bins represents the all the
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other points. When the histogram is equiprobable, the step function is used to

maximize the number of bins that are part of within the function’s limits. The

step function is shown in the diagram below.

 0

 0.2

 0.4

 0.6

 0.8

 1

-15 -10 -5  0  5  10  15

FIG. 2.3. Sample Step kernel function.

2.2 Methods to Maximize Representativeness

In this section, we discuss various methods that can be used to maximize

represetativeness. The main aim of the methods described below is to find an

optimal set of sites or points such that representativeness can be maximized.

2.2.1 Clustering

Clustering techniques are a set of methods to group data points that are sim-

ilar together [4]. These characteristics of the groups are defined by a pattern of

values in their variables. Clustering is an unsupervised learning method. It does

not require a training data set to create a model. The groups in which the data

points are to be classified need not be known at the start. Hence, clustering can
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be used for exploratory data analysis to identify patterns in the data. Clustering

is a three stage process

1. Extract features from the given set of points.

2. Perform similarity measurement between data points.

3. Create groups based on the similarity measurement.

Clustering techniques are of different types and mainly divided into 2 cate-

gories:

1. Hierarchial Clustering Techniques - These techniques create groups of

points which are similar to each other. Once a group is formed, it cre-

ates the next level by combining groups that are similar. In this way, a

hierarchy of groups is created with all groups merged at the top most level

of the hierarchy. The structure is called a dendogram [4].

2. Partitional Clustering Techniques - These techniques try to create a single

partition in the dataset as compared to a dendogram which may have a

high computation time. The problem occurs when the size of the dataset

is large. Partitional techniques try to optimize a certain function based on

which the partition is made. Calculating the optimal set of values for the

function could again be computationally expensive. Hence an approxima-

tion is calculated by executing the algorithm multiple times on the same

dataset until the function reaches a state that is close to optimal. For ex-

ample, using squared error a as function to create partitions [4]. The algo-

rithm is executed until the squared error is reduced to a value that is below

a certain pre-determined threshold.
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2.2.1.1 K-Means Clustering: The k-means clustering algorithm is a

widely used algorithm [5]. This is a centroid or partition based clustering tech-

nique. The algorithm clusters all the data points into k clusters. The algorithm

starts by selecting an arbitrary set of centroids c1, c2...ck. It then assigns each

point to the closest centroid ci. Once the points are clustered, it calculates the

center of mass for each cluster to get a new set of centroids. The previous steps

are then repeated for the new centroids. After each iteration the set of centroids

moves closer to the final set such that the next iteration does not change the set

of centroids chosen. This means the center of mass for the k clusters calculated

remains constant. The algorithm stops computing after this point. The worst

case time complexity is O(nkd) [5] where n is the number of data points, k is the

number of clusters and the points are in a d-dimensional space.

2.2.1.2 Nearest Neighbor Clustering: This is a hierarchial clustering

technique. In this clustering method, the nearest neighbor to each data point is

found and the point is assigned to that cluster. A Voronoi decomposition of the

data points is performed [6]. There is a threshold or quality function Qn to put

a threshold on the distance that is considered between the point and the cluster.

Thus all the points are put into k clusters where k is user-defined. The clustering

is implemented using a graph based structure. Whenever a point closest to the

current point is found, an edge is created between them thus linking them in the

same cluster [4]. It is also called agglomerative single-link clustering technique

and has a time complexity of O(n2) [7].

K-means clustering and nearest neighbor clustering can be used to find a set

of k centroids that maximize representativeness. K-means clustering generates

k clusters with unique centroids that are the representative points. For nearest
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neighbor clustering, we can select any point randomly from each of the k clusters

generated (as all clusters adhere to the quality function Qn), as they represent the

other points within the cluster.

2.3 Dimension Reduction Techniques

Consider a data set where each point has a large number of variables. These

variables may have different scales of values, and different densities and vari-

ances. There are a number of possible problems with high dimensional data

[8]:

1. Processing high dimensional data (especially when the number of data

points is large) is expensive.

2. Even though the number of dimensions is high, the data could be classified

or clustered using a smaller subset of variables.

3. As the number of dimensions increases, the values for some variables may

become sparse. This is known as the empty space problem [8].

4. The Curse of Dimensionality states that the number of sample points re-

quired to approximate a function increases exponentially as the number of

variables / dimensions increases.

A dimension reduction technique is a transformation which reduces num-

ber of dimensions required to represent a sample. The reduced set of dimensions

may be a subset of the original set of dimensions (for example, using informa-

tion gain) or could be a completely new set of dimensions. Some of standard

dimension reduction techniques that can be used to transform a high dimen-

sional data set are Principal Component Analysis (PCA), and Self Organizing
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Maps (SOM)[8]. Neural Networks with GIS have also been used for construct-

ing a Land Transformation Model which tries to forecast how usage changes [9].

Self Organizing Maps have been used to perform environmental assessment of

regions, grouping based on environmental conditions, and finding out which ar-

eas might deteriorate in the future [10]. Once a SOM is trained, the k nodes from

the weight vector can be used as centroids representing their respective clusters.

As the nodes may not be actual data points, the point closest to each node will be

used as a representative point. Training a SOM may require updating the weight

vector over several iterations of the data set. The time complexity of a SOM is

O(|E| • (|E|+ |V |))[11].

2.3.1 Clustering Using a Combination Of Methods

Hoffman et. al.[12] use Multivariate Spatio-Temporal Clustering (MSTC)

to calculate representativeness of sampling networks. MSTC can be performed

using a combination of PCA and K-Means clustering[12]. The data set consid-

ered is high dimensional and is assumed to contain a lot of redundant informa-

tion. Hence the method involves reducing the number of dimensions using PCA

at the beginning and then performing standard k-means clustering. Hoffman et.

al. also provide a set of improvements for performing PCA and k-means cluster-

ing. The time required to perform k-means clustering is reduced by decreasing

the number of distance computations between the centroid and the other points,

based on cluster created and new distances computed. The time complexity of

PCA computation is reduced by parallelizing it. The summation of all euclidean

distances from points to their nearest sample locations or centroids, is used to

measure representativeness of the sample set. Higher the sum, lower is the rep-

resentativeness of the sample set.
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In the next chapter, we introduce PCA and our method to calculate repre-

sentativeness, as well as how we find new locations such that representativeness

can be improved.



Chapter 3

PROJECT ARCHITECTURE

This chapter discusses the goals & objectives of the Globe project, the ar-

chitecture of the current prototype, examples of how the system works and de-

scribes the kind of data that is used. This helps us understand the workflows in

the next chapter as well as the examples used while performing experiments.

3.1 Globe Project

During the course of scientific study on climate change, there have been

improvements in creating models for the climate and the environment, but the

effect of human activity is not directly observable [1]. Scientists find it difficult

to create models at the global level because comprehensive models at the local

and regional levels have not been created. Coupled Human and Natural Systems

(CHANS) [1] involves research in understanding the effects of human activity

on the Earth. Research in the Land Change Science community involves con-

ducting two types of case studies for this purpose. Local case studies investigate

changes in the environment of a specific locality and observation of local land

managers. These case studies are normally limited to a pre-defined area. The

other type of studies are regional case studies, which involve combining local

16
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observations and remote sensing data to analyze land change beyond the defined

boundaries of a locality [1]. Using these cases, and regional and generic global

information, meta-studies are created which aggregate knowledge at a global

scale using quantitative methods.

The Globe project, as introduced in the first chapter, is a project to main-

tain old workflows as well as to create new workflows in Land Change Science

(LCS). It provides a set of quantitative tools to help practitioners analyze case

studies better. These include methods to calculate the similarity between case

studies, measure how relevant a case study is, and visualize globally the cover-

age of a case study across the world. The major objectives of the project are:

1. To create an online environment where researchers can collaborate.

2. To find methods and metrics to evaluate workflows.

3. To create a framework where information from case studies can be glob-

ally stored and retrieved to futher analyze the data. Our work tries to find

a method to generalize case studies by finding similar locations like the

ones mentioned in the studies for a predefined set of parameters.
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3.2 Globe Architecture
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FIG. 3.1. Globe Architecture

As the diagram above shows, the Globe architecture consists of three dis-

tinct layers:

1. Database Layer: This layer maintains all the raw global information and

case geometries available.

2. Application Server: The current application server used is Glassfish [13].

It contains all the function modules for managing cases, collections, the

global data, and the global correlation engine.

3. Client Layer: This contains the website that is visible to the end user. The

web layer is constructed in Javascript and HTML5, and uses D3 [14].



19

3.2.1 Database Layer

The database layer uses a Postgres object-relational database management

system, i.e., it is similar to a relational database management system but with

object oriented design where classes can be directly mapped to database schema.

Table data can be accessed using standard SQL commands. It implements all

properties of ACID (atomicity, consistency, durability and isolation) and is an

open source database available on most operating system platforms including

various flavors of Linux and Windows. The version of Postgres SQL used is 9.1.

PostGIS is an open source software project which is used for working with

geographical data. It can be used to maintain geospatial databases and is built

on PostgreSQL. It follows the published standards from the Open Geospatial

Consortium (OGC). The package provides many useful functions such as storing

geometries of geographical areas, calculating metrics such as distance and area

of a region, and data structures to store geometries to efficiently search them.

The data is available in the form of shape and DBF files. DBF Files are

database files (started by dbase) used to store information in the form of tables.

The shape file format is used to store geospatial data in files and is used by

Geographical Information Systems (GIS). The shape file format consists of a

set of files which include files to maintain the main geometries, indexes, the

attributes associated with these geometries, and co-ordinates of the geometries.

The current global dataset contains around 45 variables. There are six categories

of variables Surface, Climate, Human, Biological and Remote Sensing[3].
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3.2.2 Application Server

Globe is a web-based application which is hosted on a Glassfish application

server. Glassfish is an open source application server by Oracle Corporation.

The application performs the following functions:

1. Case Management: This module works with all the meta case studies

information. It provides the API to perform data management activities.

2. Collections: A collection is a set of case studies that are used in a work-

flow. Collections maintains these sets.

3. GCE: The GCE is the Global Correlation Engine which performs two

main functions of Globe, i.e., similarity and representativeness computa-

tion. Similarity measures how similar the other regions of the world are

as compared to a region in a case study based ob a set of global variables.

Representativeness, as introduced in the previous chapter, calculates how

much a case study covers the rest of the world for a selected set of vari-

ables from the set of global variables. Our work focuses on measuring

representativeness.

4. GDA: This is the global data array. It maintains all the global Data in

memory. The information is stored in the form of two data structures, a

quad tree and a floating point matrix. The floating point matrix is used to

store the global variable information of every region on the world map.

The world map is divided into regions depending on the resolution at

which the map is viewed. For the current maximum resolution that can

be visualized in Globe, the world map is divided into a total of about 1.4
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million grid cells, which is the size of the matrix. This is part of the Dis-

crete Global Grid that is explained in the following section.

3.2.3 Client / User Interface Layer

The client is web-based client and constructed in HTML5 and JS. The data

is obtained from the server dynamically using AJAX. The maps are overlaid

onto Google Maps, and charts are constructed using D3 [14]. D3 is a Javascript

library which manipulates documents based on the data that is provided. It is

used for the purpose of generating graphs and visualizations. An example image

of the web client is given is below:

FIG. 3.2. Globe Web Client
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3.2.4 Constructing Google Maps

The Discrete Global Grid (DDG) [15] divides earth into a set of regions

which are hexagonal. The number of hexagons and the area covered by each

hexagon changes according to the resolution which is used. At the smallest res-

olution, each hexagon is represented by point which is the center of the hexagon.

For the Globe project, the resolution used is ISea3H level 12. The total number

of cells are 5,314,412 and the area of the each hexagon is 95.978 km2 Google

Maps as shown in the previous figure is used to display the representativeness of

sites. Google Maps is made up of tiles as shown in the next figure.

FIG. 3.3. Zoom Level - 0 Google Tiles

Each tile is of size 256x256 pixels. The request sent by Google Maps con-

tains three parameters z, x and y, where z is the zoom level and (x,y) is the

specific tile upon which an image is displayed. The image is constructed in the

form of a bitmap and then converted to a PNG file. Thus the tiles generated

are superimposed over the google map imagery. When the request is sent for a

specific tile, the Globe server maps the tile’s location to a latitude and longti-
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tude co-ordinate for its boundaries. The specific regions of the world which fall

within the range of the coordinates are searched.

Spatial Indexing methods are used to manage spatial data (which could be

multi-dimnesional) points and to help improve the performance of retrieving

geometries or regions from the defined space. Hierarchial data structures are

used for the purpose of spatial indexing. They employ the divide and conquer

strategy. The data structure contains the information of the entire space (the

world map in this case) at top (or root) level and they subsequently divide each

region into smaller regions recursively [16]. When a predefined depth is reached,

the data point is stored. The quadtree is a type of hierarchial data structure which

is a tree structure having exactly four child nodes. Each node contains the data

point, or in case of Globe, a pointer to the data point in the global matrix. There

are many types of quadtrees [17] viz. region quadtree, point quadtree, edge

quadtree, polygon map quadtree. In Globe, a point quadtree is used. In a point

quadtree each node stores the location of a point or Global Land Unit (GLU)

which is the centroid of its respective hexagon.

Once the hexagons / GLUs within the range of coordinates are found, they

are colored based on a value (between 0 & 1) calculated after a representative-

ness computation is performed for each GLU. The color is mapped linearly to

the values, i.e., the scale between 0 & 1 is divided into equal parts based on the

number of colors in the color pallete and then the GLU’s are assigned a color

based on which bucket the value falls into. The PNG which is created is then

sent to Google Maps for rendering.



Chapter 4

A DIMENSION REDUCTION TECHNIQUE FOR

CALCULATING REPRESENTATIVENESS

This chapter discusses Principal Component Analysis (PCA) in detail, the

steps required to compute it, the method used to select points to maximize rep-

resentativeness, and how the final metric of representativeness is calculated.

4.1 Preliminaries

Listed in this section are the parameters that need to be calculated to per-

form PCA.

4.1.1 Standard Deviation

The standard deviation gives us an idea of the spread of a distribution. It

describes the variation in data on both sides on the mean. A standard deviation

SD for given dataset D is

σ(a) =

√√√√ ∑
x∈D

(xa − ā)2

N − 1
(4.1)

24
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where N is the number of data points, a is the variable, xa is the value of variable

a in data point x, and ā is the average of variable a. In a multivariate dataset, the

standard deviation is calculated for every variable.

4.1.2 Variance

Variance is defined as the square of the standard deviation.

VAR(a) = σ2(a) (4.2)

Like the standard deviation, it is calculated separately for each variable.

4.1.3 Covariance

Covariance is a generalization of the concept of variance for two dimen-

sions. It defines how the two dimensions co-vary. In our example, the two

attributes are a & b, Covariance is given by the following formula

COVAR(a,b) =

∑
x∈D

(xa − ā)(xb − b̄)

N − 1
(4.3)

where N is the number of data points. The covariance calculation for two dimen-

sions forms a 2x2 matrix. For 2 dimensions a & b, it is given in the form[18]:

⎛
⎝ COVAR(a,a) COVAR(a,b)

COVAR(b,a) COVAR(b,b)

⎞
⎠
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4.1.4 Eigenvalues & Eigenvectors

A linear transformation on a vector is a transformation that maintains the

property of additivity and homogenity. An Eigenvector is a vector that remains

unchanged after a linear transformation. The only change that the vector un-

dergoes is a change in magnitude. The scalar magnitude by which the vector

changes is called the Eigenvalue. The Eigenvector is orthogonal to the original

vector [19]. Consider a matrix A, then

Ax = λx (4.4)

where x is the Eigenvector and λ is the Eigenvalue.

4.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique used to analyze multi-

variate datasets and to find patterns in the data. It is used as a dimension reduc-

tion technique where higher dimension data points can be projected onto a lower

dimension space [20]. It takes a data set of n dimensions and projects it onto a

set of new dimensions (which again can be a maximum of n) that are orthogonal

to each other (although all n need not be used). The new dimensions are not

correlated with each other. They are called Principal Components. The prin-

cipal components are calculated by performing an eigen decomposition of the

covariance matrix. The covariance between dimensions in the original dataset

is used because those dimensions which have a higher variance, provide more

information regarding the nature of the dataset [21]. Another reason to use PCA

is because it is easy to understand and efficient algorithms exist to compute each
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step [21]. It is also a widely used method because it is able to reduce noise

and the dimension reduction performs data clustering [22]. As we shall see, the

cost of computing distance is also reduced as the final distance is in a single

dimension.

Consider the following example dataset which we will use to explain vari-

ous concepts and PCA as well as show the steps which are required to perform

PCA. The dataset has 10 points has given in table below:

a b

2.8 1.8

3.5 2.9

4.9 3.5

6.2 8.8

Data = 8.5 6.7

1.6 5.5

3.1 4.3

3.3 3.2

2.1 8.1

9.2 7.5

Table 4.1. Sample Data for performing PCA
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FIG. 4.1. Sample Data

The following steps are required to perform PCA [18]

Step 1

Calculate the arithmetic mean for each dimension and then subtract the mean

from the every data point. The arithmetic mean for a & b are

Mean(a) = 4.52 & Mean(b) = 5.23

The table below shows the data points after the values are adjusted with the

mean.
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a b

-1.72 -3.43

-1.02 -2.33

0.38 -1.73

1.68 3.57

Newdata = 3.98 1.47

-2.92 0.27

-1.42 -0.93

-1.22 -2.03

-2.42 2.87

4.68 2.27

Table 4.2. Sample Data after Subtracting Mean

Step 2

Calculate the covariance matrix using equation 4.3 [18]. The covariance matrix

is ⎛
⎝ 6.95 2.90

2.90 5.94

⎞
⎠

The standard deviations calculated using equation 4.1 of attributes a & b

are

SD(a) = 2.63, SD(a) = 2.43

The variances can be calculated using equation 4.2 of attributes a & b

VAR(a) = 6.95, VAR(a) = 5.94

The variances for a and b, as seen from this example, is present in the covariance

matrix along the diagonal.
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Step 3

Calculate the Eigenvalues and Eigenvectors for the covariance matrix [18]. For

our example they are:

Eigenvalue =

⎛
⎝ 3.50

9.40

⎞
⎠

Eigenvector =

⎛
⎝ 0.644 −0.765

−0.765 0.644

⎞
⎠

Step 4

The first principal component is the vector with the highest eigenvalue [18]. In

our example, the second vector has an the highest corresponding eigenvalue of

9.40. We can use it as a vector on which all the data points are projected.

Step 5

Project the data points on the new dimension by using the formula

FinalData = MeanAdjustedData • PrincipalComponent (4.5)

The equation calculates the dot product the Mean Adjusted Data and the princi-

pal component used. The table below shows the final value of each data point

and figure 4.2 shows the data points.
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First Second

3.524 1.516

2.280 1.125

0.823 1.568

-3.584 -1.649

FinalData = -3.991 1.438

2.060 -2.086

1.685 -0.202

2.240 0.767

0.003 -3.754

-5.042 1.277

Table 4.3. Final Adjusted Data along First Principal Component

FIG. 4.2. Final Adjusted Data
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4.3 Measuring Representativeness Using PCA & Histograms

The following section provides the details of the algorithm to calculate Rep-

resentativeness of a given sample set of regions and how to select a new set of

sites to improve representativeness across the entire world for the selected set

of attributes or variables. Land Change scientists know many regions across the

world are not represented by sample sites in their case studies by design. In

Globe, they are provided the option to filter out these regions, so that they are

not considered as part of the analysis. Hence we apply our method to the list of

unfiltered regions.

The following diagram shows the algorithm’s workflow:

FIG. 4.3. Workflow to Calculate Representativeness
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As shown in the diagram above, the algorithm has two distinct workflows

to solve two objectives:

1. The first workflow calculates the representativeness for the user-defined

Sample Set of regions where case studies were conducted.

2. The second workflow provides a method to select N regions to maxi-

mize representativeness for the user-defined set of attributes. These are

the places where the system can recommend that a study could be con-

ducted. Once the regions are selected the representativeness of these sites

is calculated.

Both workflows use a distance metric to calculate how close a location is to

another location where a study was conducted.

FD(x) = min(Dp(x)−Dp(s)s∈S) (4.6)

where x is a specific location across the world and s is a place in the world where

a study was conducted. s is part of a larger Sample Set S. Dp is the projection of

a location (or data point) onto the first principal component. The final distance

FD(x) is the minimum distance between x and S.

Representativeness of the Sample Set, as given in equation 2.1 can now be

transformed to the following equation:

R(S | D) =

∑
x∈C

∑
b∈W

Freq(H, b)

D
(4.7)

where R(S | D) is the representativeness of Sample Set S and D is the complete

dataset. H is the histogram of Dp. Freq(H, b) is the number of points in (or the
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frequency of) any bucket b in histogram H. The window size W that is a set of

buckets b. A selected region represents all regions in W. W can be user-defined.

C is the set of regions or centroids selected.

4.3.1 Preconditions

Before any of the following workflows are executed, the user selects a sub-

set of the global variables (such as temperature, %tree cover) for which repre-

sentativeness is measured. Also, the user is allowed to filter out a set of regions

from the dataset. For example, the user may choose to limit the dataset only to

regions which are in the tropics (i.e., having a temperature between 15oC and

31oC). Once the data is filtered, we get a final list of regions and matrix contain-

ing the value of each user selected variable for each of these regions.

4.3.2 Workflow 1 - Calculate representativeness of given sample set

The steps to calculate representativeness of a sample set of sites (equation

4.7) that are provided by the user are:

Step 1

Select the a set of variables based on which representativeness is measured. Cal-

culate the eigenvalues and eigenvectors for all the unfiltered regions across the

world. If the unfiltered regions do not contain the sites that are part of the Sample

Set, then find the first principal component and project all the regions (including

the sites) onto this dimension.

Step 2

Calculate the distance between each region and a region in the Sample Set. The

Final Distance is the minimum distance found. It shows which location in the

Sample Set is closest to the current location being considered and how close it
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is.

Step 3

Display all the locations on Google Maps with a color chosen according to the

final distance calculated. All the distance are a value between 0 & 1. A color

pallete consists of a set of shades (e.g. from Green to Red where Green is con-

sidered as a place completely represented by one of the sample sites while Red

is completely unrepresented). The scale between 0 & 1 is divided based on the

number of shades which are in the color pallete. The color associated with the

bucket in which the final distance of a place falls, is applied on Google Maps,

on top of the location of that place. The following diagram (figure 4.3.2) is an

example of how the color scheme looks.

FIG. 4.4. Representativeness Coloring Scheme

4.3.3 Workflow 2 - Creating a set of Ideal sites

An ideal set of sites is a set of sites that maximizes representativeness but

at the same time has a minimum number of sites required to reach that mea-

sure of representativeness. The steps to find a set of ideal set of sites that are
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representative of all other regions in the world are:

Step 1

As seen in the previous workflow, calculate the eigenvalues and eigenvectors for

all the unfiltered regions across the world.

Step 2

Once the regions are projected onto the first principal component, create the

histogram of that dimension. The histogram requires a number of buckets into

which the dimension is divided. The number of buckets is defined after testing.

Once the histogram is constructed, a window of size W is defined such that

1 ≤ W ≤ number of buckets

The window is a set of buckets (containing regions) such that any region

in the bucket represents all the regions in the buckets which are present in W.

W is either user-defined or an arbitrarily fixed size. The algorithm performs the

following steps N times where N is the number representative sites to be found.
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Algorithm 1: Finds M points to maximize Representativeness of Points

Input: A finite set FBP = {fb1, fb2, . . . , fbm} of Frequency of

buckets in Histogram H , window size W

Output: A finite set C containing a set of N representative Points

rand() is picks a random point from a bucket bk

WUsed is bit array of size �BP

W
	

BP contains points each bucket. BP = {b1, b2, . . . , bm}
MW is the window with Maximum Frequency.

for i ← 1 to �BP

W
	 do

WUsedi ← false

for i ← 1 to N do

max ← −1

j ← 1

MW ← −1

maxBin ← −1

while k ≤ n do

if (fbk ≥ max) && (WUsedj = false) then

max ← fbk

maxBin ← bk

MW ← j

if mod(k,W ) = 0 && (k/W ) ≥ 0 then

j ← j + 1

k ← k + 1

WUsedMW ← true

P ← rand(bmaxBin)

Ci ← P

return C
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Algorithm 1 shows how an ideal set of sites is selected. Consider a his-

togram H, with window size W. Let BP contains points each bucket. MW is the

window with the maximum frequency. �BP

W
	 is the total number of windows in

histogram H. We maximize representativeness by selecting a single point from

a window. Once a window is utilized, it not used again. This is because a point

from a given window of buckets represents all the points in the window com-

pletely. WUsed is an array of bits that shows which of the windows have used.

WUsed is initialized to false. Then, the algorithm iterates through each bucket

in the histogram and finds the bucket which has the maximum frequency (mode)

and that is part of a window that has not been used before (i.e., where WUsedi

is false) . A bucket bk is part of a window �(k/W )	. If bucket bk is the bucket

with the maximum freqeuncy, then make WUsed�(k/W )� as true. Then, select

any point from bk and add it to the final list of centroids C. The above set of

steps performed to find a centroid, is repeated N times to get a set C containing

N centroids.

The algorithm has to take care of a specific condition i.e. the case when the

number of centroids required is higher as compared to the number of bins that

are greater than 0. In such a case, the number of centroids returned is limited to

number of non-zero bins that can be found.

Step 3

This step is the same as the previous workflow, where the regions selected are

displayed on a World Map with the representativeness of the entire set.
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4.4 Optimization

To improve the accuracy and the runtime efficiency of the method, opti-

mizations were performed.

4.4.1 Covariance Calculation

The standard method to calculate the covariance value between two at-

tributes is given in equation 4.3. This method requires two passes over the entire

data, i.e., the first pass to calculate the average for each attribute and then to

calculate the variance. Instead we can reduce equation 4.3 to

COVAR(a,b) =

∑
x∈D

xaxb

N − 1
−

∑
x∈D

xa

∑
x∈D

xb

N(N − 1)
(4.8)

Now,
∑
x∈D

xaxb and
∑
x∈D

xa

∑
x∈D

xb can be calculated in a single pass of the

data, while the number of elements for which it is calculated is counted.

4.4.2 Data Sphering

The final adjusted data (i.e., equation 4.5) can be affected by attributes

which have very large values as compared to others, even though the variance

in the attribute is low. Hence, before performing PCA, we sphere the data, i.e.,

change the scale of the data in each attribute so that values are between 0 & 1.

We use the following formula for this purpose:

SphereData =
∑
x∈D

∑
i∈M

(xi − ī)

SD(i)
(4.9)
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where M is the set of attributes, SD(i) is the standard deviation of attribute i from

equation 4.1. ī is the average value of the attribute i.

4.4.3 Computing on Reduced Data Set

Even with the optimizations described above, computing PCA values and

then the final distances for about 1.4 million regions is time consuming. This

is because as the attributes selected change for every request (user-input), the

covariance matrix and the final adjusted data have to be recomputed. Hence to

reduce the computation time even further, the 1.4 million regions were reduced

to approximately 160,000 regions that represented the same distribution. The

160,000 regions are created by reducing the resolution of the map and increasing

the size of the each the hexagons. The number of hexagons is based on ISea3H

levels 10 and 12. Then, the center of each these hexagons is used to represent all

the regions that are part of the hexagon.



Chapter 5

EXPERIMENTAL RESULTS & ANALYSIS

This chapter discusses the results of experiments conducted and the effec-

tiveness of the methods described in the previous chapter compared to random

sampling. Land Change scientists also compare their sample sites against ran-

dom sampling, as a standard practice. Each experiment conducts 3 sets of tests.

The first test is to calculate the representativeness of the sample sites given by

the user. The second test uses the histogram method discussed in the previous

chapter to generate a new set of sites (the number of sites is equal to that defined

by the user) where a study can be conducted. It also calculates the representa-

tiveness for the same. The third test generates representativeness for a random

set of sites for the same number of sites as in the previous two cases. Random

sampling is performed 1000 times to eliminate any bias created from a limited

set of random sampling tests. We define the ideal sample set as the set of samples

generated by the histogram method 1.

5.1 Measuring Representativeness

The Van Vliet study has been used for the purpose of conducting experi-

ments [3]. This meta-study conducts a global assessment of swidden cultivation

41
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i.e. slash and burn. It is an agricultural technique where forested areas are burned

to create fields for agriculture. There are a total of 157 sites that are part of the

study. These sites are used as centroids in our experiment to measure its repre-

sentativeness. The window size for all experiments below is 1 and number of

bins in the histogram is 157.

Figure 5.1 shows the location of sites that are part of the Van Vliet Study.

FIG. 5.1. Sites in Van Vliet Study

5.1.1 Measuring with a Filter

The following parameters are applied in the experiment:

1. Filter: A filter is applied so that regions of the world the author does not

claim to represent are not considered in the analysis. In the example, the

parameter potential vegetation is used to filter the data set. Potential veg-

etation has a range of values form 0 to 12 [23]. The values considered in

the experiment are from 1 to 2. These values are used filter out all regions

except the tropical regions (and some forested areas) across the world.



43

2. Variables: A total of 3 attributes or variables are used in the experiment

viz. potential vegetation, market access and temperature. The selection of

the variables is based on the study.

3. Zoom Level: The zoom level decides the total number of points which are

considered in the dataset. For example, at zoom level 4, the total number

of points or regions is 160,000. The experiments are conducted at zoom

level 6. The total number of points at this level is about 1.4 million. When

the filter is applied, the total number of Global land units GLU’s is reduced

to about 250,000.

4. Color Scale: The color scale applied has a total of 10 colors from red to

green. It depicts the different levels of representation in the heat map.

The figures 5.2, 5.3, and 5.4 depict the heat map generated for the Van Vliet

study. The color scale is provided at the bottom of each image. The scale goes

from red to green, where green depicts “complete represention” and red depicts

“complete non-representation”. The parts of the world that are filtered out are

shown in dark blue. This contains all the water bodies and the other regions of

the world that do not fit the filter criteria.
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FIG. 5.2. Representativeness of Filtered World Regions Using Given Samples

FIG. 5.3. Representativeness of Filtered World Regions Using Ideal Samples
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FIG. 5.4. Representativeness of Filtered World Regions Using Random Samples

Figure 5.2 shows some regions that are not represented by the locations in

the study. The maps generated using given, random and ideal samples are almost

the same. This is because of the definition of representativeness. To maximize

representativeness, the sampled regions have to “cover” as much of the filtered

regions as possible. To represent a set of regions that have similar conditions,

only a single point or location is required. Based on the filter used, the potential

vegetation, temperature and market access parameters are of similar areas as can

be seen on the map. This makes regions cluster with high frequency in specific

regions in the PCA space, thus making the number of locations required to rep-

resent them lower than 157. This is seen in the histogram in figure 5.5 where

the high frequency bins require only a single location in the bin to represent the

entire bin. Thus random sampling and the histogram method to calculate new

locations have representativeness values that are close to 1.0 or 100%.
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FIG. 5.5. Histogram Of First Principal Component Values (For Filtered Data)

of 1.4 Million Regions

Figure 5.7 shows the comparison of representativeness of the given sample

and the ideal samples generated against random sampling conducted. Represen-

tativeness for the given sample set at 48th percentile while the ideal sample set

is at 100 percentile. It means that the given sample set is better than random

sampling only 48
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FIG. 5.6. Histogram Of First Principal Component Values (For Filtered Data)

of 160000 Regions
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FIG. 5.7. Histogram Of Representativeness for Random Sampling and Where

Other Methods Lie

Method Representativeness

Given Sample 0.994

Ideal Sample 1.0

Avg. Random Sampling 0.9937

Table 5.1. Representativeness Of Samples for Filtered Data

Figure 5.6 shows that the same histogram trend is maintained when we per-

form PCA on a downsized dataset. Hence the calculations made on a ISea3H

level 10 are applied to the ISea3H level 12 hexagons. Thus representativeness,

based on a downsized number of regions, does not change as nature of distribu-

tion remains the same. The total number of regions for the downsized set after
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filtering is 27883.

5.1.2 Measuring without a Filter

This section describes an experiment to compare the various samples with-

out a filter being applied. The data set is the complete 1.3 million regions across

the globe. The world maps generated show a clearer differentiation in the given

sample representativeness against that of an ideal and a random sample.

FIG. 5.8. Representativeness of Unfiltered World Regions Using Given Samples
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FIG. 5.9. Representativeness of Unfiltered World Regions Using Ideal Samples

FIG. 5.10. Representativeness of Unfiltered World Regions Using Random

Samples
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FIG. 5.11. Histogram Of Representativeness for Random Sampling and Where

Other Methods Lie

Figure 5.11 gives an idea of the distribution of representativeness values

for random sampling and shows where the given sample and ideal samples are

placed in the distribution. Table 5.2 shows that ideal sampling has the highest

representativeness.

Method Representativeness

Given Sample 0.362

Ideal Sample 0.995

Avg. Random Sampling 0.972

Table 5.2. Representativeness Of Samples for Unfiltered Data
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The variables selected affect the nature of the distribution. A uniform dis-

tribution of points across variables will reduce the amount variation covered by

a single principal component. For example, if the variables distributed the data

points in the form of a circle (in a 2 dimensional graph), then there would not

be a one principal component that would cover a large portion of the variation

limiting the use of PCA. The variables we have used in our experiments have a

large variation (e.g. temperature) where as potential vegetation is a categorical

value limiting variation.

5.2 Ideal vs Random Sampling

In the previous section, the results show that ideal sampling has a represen-

tativeness close to 1.0, the same as random sampling. This result, as described

previously, is a function of the number of sites (or centroids) that need to be

generated. Since the number of sites (157) is large, the representativeness is

close to 1.0. We can analyze the effectiveness of ideal sampling by measuring

the representativeness of ideal samples against random sampling for a reduced

of sample size. We consider the unfiltered data points as in previous example.

The following graph shows the trend for representativeness for the two methods,

starting from the selection of 1 sample site to a total of 157.
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FIG. 5.12. Representativeness Trend - Increasing Number Of Centroids

The trend shows that ideal sample representativeness tends to 1 to with

fewer centroids as compared to random sampling, making it better to select sites

as compared to random sampling. Table 5.3 shows the number of centroids

required by each method to reach a value for representativeness close to 1.

Method No. Of Centroids Representativeness

Ideal Sampling 60 0.99

Avg. Random Sampling 100 - 130 0.95 - 0.967

Table 5.3. Number Of Centroids & Representativeness
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5.3 Measuring the Effect of Histogram Size

The ideal samples are generated by constructing a histogram of the first

principal component. The algorithm 1 is affected by 2 parameters, i.e., the num-

ber of bins created in the histogram and the window size. The window size is the

number bins in which any data point can be considered to represent the rest of

the data points with the bins in the window completely. Currently, the window

size and number of bins are chosen after testing. Figure 5.13 shows the change

in representativeness for various window sizes and varying number of bins.

FIG. 5.13. Representativeness Trend - Increasing Number Of Bins

The test has been conducted for window sizes 1, 2 & 5. The minimum num-
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ber of bins taken is equal to the number of centroids required which is maintained

at 157 throughout all the tests. As the window size is 1, there are a total of 157

bins from which a data point can be selected (refer to the algorithm 1). As the

number of bins is increased, the representativeness decreases, until it reaches a

set of bins after which the representativeness becomes stable. The second obser-

vation is that the rate of decrease in representativeness is lower when the window

size is increased. Thus a higher window size can reduce rate of decrease in rep-

resentativeness. We explain the reasons for the decrease in the next section.

5.3.1 Effect of the Number of Bins

FIG. 5.14. Example for Bin Distance

Consider figure 5.14. There are 3 points A,C1, and C2, where C1&C2 are

2 centroids. dAC1&dAC2 are the distances between the points A&C1 and A&C2

in the first principal component respectively. δ is the distance between C1&C2.

From the diagram, we see if δ → 0, then (dAC1 − dAC2) → 0.

IntervalSize =
pmax − pmin

NoOfBins
(5.1)
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where pmax and pmin are the maxmimum and minimum values in the first prin-

cipal component respectively.

Thus, when the number of bins increases, IntervalSize decreases. Consider

the case when window size is 1. Consider figure 5.5 where there are certain

parts of the histogram that have high density. As the IntervalSize decreases,

centroids are chosen from bins adjacent to the mode where δ → 0. The final

representativeness is based on the color scale that is used. All the data points

that fall in the first bin of the scale are considered completely represented by the

sample set. As more centroids are selected, the difference in the distance either

remains the same or get smaller. The redundant centroids generated are unable

to cover the rest of the points in the distribution to minimize the distance and

maximize coverage. Thus,

NoOfBins α Colorscale (5.2)

Representativeness stabilizes after a certain number of bins because the his-

togram is divided into small parts such that coverage is only for the high density

part of the histogram from where all the centroids are selected. In such a case,

increasing the number of bins no longer affects the representativeness.

5.3.2 Effect of the Window Size

The window size creates a minimum distance between any 2 centroids that

are selected as only a single point can be selected from within a bin in a certain

window at a time. Hence figure 5.13 shows a lower rate of decrease in represen-

tativeness as the number of bins increase. For a optimal representativeness, the

ideal sample set selected should be function of the number of bins and size of
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the window used. Hence equation 5.2 can be modified to,

NoOfBins

WindowSize
α Colorscale (5.3)



Chapter 6

CONCLUSION & FUTURE WORK

We have provided a definition and an algorithm for calculating the rep-

resentativeness of a set of sample sites. When the number of dimensions in-

creases, clustering methods become computationnally inefficient. This is specif-

ically when the representativeness needs to be calculated in near realtime. Hence

dimension reduction techniques are used. We have used principal component

analysis to perform n-dimension reduction into a single dimension based on the

variance of attributes. This helps us project points onto the first principal compo-

nent with maximum difference or spacing between points. To nullify the effect

of the magnitude of the values in each attribute, normalization of each column is

performed. This makes all the values fall in the scale from 0 to 1. The distances

from the given sample set to other points are calculated using their first principal

component projected values. We see that the results of the heat map generated to

show representativeness across the globe is as expected. To maximize represen-

tativeness, we have provided a method that is based on the creating a histogram

of the PCA values and selecting modes. The method is able to maximize rep-

resentativeness as seen in the experiments conducted. The samples drawn from

land change literature and the ideal samples are compared against random sam-

58
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pling. We show that if a filter is applied, the given sample set has the lowest

representativeness as compared to the other two methods (figure 5.7 and figure

5.11), even though representativeness is greater than 0.9. It also shows that ideal

sampling is better than random sampling. We are also able to see, as shown in

figure 5.12, that ideal sampling reaches the same measure of representativeness

as compared to random sampling with fewer samples. Hence it is better than ran-

dom sampling at performing site selection. We also analyze the properties of the

ideal sampling method for each of the parameters affecting the method, mainly

the number of bins in the histogram and the window size. We show (figure 5.13)

that when the number of bins is increased the representativeness decreases until

it reaches a stable level.

In the future, a set of improvements can be performed. These are:

1. Creating a function correlation between the number of bins in the his-

togram to the scale applied for representativeness. The current method

applies an arbitrary number of bins in the histogram. This helps to maxi-

mize representativeness under all conditions.

2. The scale applied is a linear scale from 0 to 1 that is divided equally. There

is no correlation between the scale and the actual distance calculated be-

tween the centroids and the other points. If the initial projected values are

very small, then the distances calculated are also small. Thus a region that

is not related to any of the centroids can be shown as being represented.

One solution to this problem is to normalize the projected values again, so

that in case the values are very small they are scaled up accordingly to a

value between 0 and 1. The points that have a value greater than 1 can be

considered as outliers.
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3. The problem of the distance (between a sample and another region in PCA

space) being very small may still exist. The representativeness scale can

be changed to account for regions in the principal component where the

density of points is concentrated. Thus, density estimation and PCA out-

lier detection can be performed to create a tighter lower and upper bound

of projected data points.

4. The visualization of the map can be improved by implementing isolines or

contour lines. Contour lines or isolines are lines across which the function

has the same output value. Thus isolines can be implemented for all the

areas that have the same projected value on the first principal component.
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