
Motif Discovery in Spatial Trajectories using Grammar Inference 
Tim OatesϮ      Arnold P. BoedihardjoФ      Jessica LinЖ      Crystal ChenФ      Susan FrankensteinФ      Sunil GandhiϮ 

ϮUniversity of Maryland Baltimore County 
Dept. of Computer Science 

oates@cs.umbc.edu 
sunilga1@umbc.edu 

ФU.S. Army Corps of Engineers
Engineer Research and Development Center 

{arnold.p.boedihardjo, crystal.chen,  
susan.frankenstein}@usace.army.mil 

ЖGeorge Mason University
Dept. of Computer Science 

jessica@gmu.edu 

ABSTRACT 
Spatial trajectory analysis is crucial to uncovering insights into the 
motives and nature of human behavior.  In this work, we study the 
problem of discovering motifs in trajectories based on symbolically 
transformed representations and context free grammars.  We 
propose a fast and robust grammar induction algorithm called 
mSEQUITUR to infer a grammar rule set from a trajectory for 
motif generation.  Second, we designed the Symbolic Trajectory 
Analysis and VIsualization System (STAVIS), the first of its kind 
trajectory analytical system that applies grammar inference to 
derive trajectory signatures and enable mining tasks on the 
signatures.  Third, an empirical evaluation is performed to 
demonstrate the efficiency and effectiveness of mSEQUITUR for 
generating trajectory signatures and discovering motifs. 

Categories and Subject Descriptors 
H.2 [Database Management]: Database Applications – data 
mining, spatial databases and GIS.  

Keywords 
spatial trajectory, motif discovery, grammar induction, activity 
recognition. 

1. INTRODUCTION 
Spatial trajectory data is increasingly becoming a critical part of 
human behavior analysis.  From traces of GPS (Global Positioning 
System) signals recorded on smartphones to object movements 
tracked in surveillance video feeds, the modes by which spatial 
movements are captured have increased in both breadth and 
fidelity.  As a result, there is a tremendous amount of data that can 
be used to help bring insights into the motives and behaviors of 
moving agents.  Some examples of analytics performed on spatial 
trajectories are activity recognition [25], path clustering [9], and 
motif discovery [10].  

Two critical factors that impact the performance and accuracy of 
trajectory analytics are the data’s massive size and the presence of 
noise.  For example, in the GeoLife data [25-27] where 
approximately 150 users’ GPS coordinates are recorded (some for 
several years), a trajectory set can consist of up to 100,000 time-
indexed spatial coordinates for an individual.  With more than 150 
users, the data set contains almost 25 million spatial points. The 
recorded spatial points also contain errors due to factors such as 
signal attenuation and computational constraints placed on the GPS 
devices.  Hence, it is imperative that the analytical tasks employ 
algorithms that can efficiently and robustly process large and noisy 
data sets. 

In this work, we study the problem of generating a compact and 
scalable model for large and noisy trajectory data and apply the 
model to discover repeated patterns (motifs).  Under the 
assumption that observations of a spatial trajectory arise from a 
generative process that probabilistically outputs trajectory segments 
across time, a feature model that can embed this essential 
characteristic and meets the constraints for scalability and 
compactness is a grammar rule set.  Hence, we address the 
voluminous and noisy data issues by transforming the 2D or 3D 

spatiotemporal data into a symbolic representation and modeling it 
via grammar rules.  This paper proposes a fast and robust induction 
algorithm called mSEQUITUR to generate the grammar rules and 
discover motifs in spatial trajectories.  In addition, we developed 
the Symbolic Trajectory Analysis and VIsualization System 
(STAVIS), the first of its kind trajectory analytical system that 
applies our signature representation to a variety of trajectory 
analytical operations.  This system supports an end-to-end 
analytical framework for querying, processing, and visualizing 
symbolic spatial trajectories.  

The major contributions of this paper are summarized as follows: 

1. Proposed a novel linear space/time grammar induction (GI) 
algorithm, mSEQUITUR, for spatial trajectories that is robust 
to noise and effectively models the geometric relationships of 
the trajectories. 

2. Developed the first analytical system framework, STAVIS, for 
symbolic spatial trajectories that supports spatiotemporal 
queries, pattern mining, and visualization. 

2. BACKGROUND AND RELATED WORK 
In this section, we briefly discuss background and related work on 
GI. We begin by defining our data type of interest, spatial 
trajectories, and the problem statement: 

Definition 1. Spatial trajectory: A trajectory  is a time indexed 
and ordered set of (noisy) location points sampled from a curve 
generated by an object moving in 2-dimensional geographic space.  

Problem Statement. Given a trajectory , generate a robust and 
compact grammar rule set from  with time and space complexity 
linear in the size of .   

Our goal is to build models of trajectory data that facilitate both 
deep human understanding of the underlying generative processes 
and additional machine processing for motif detection.  The choice 
of model class is thus extremely important because it must be 
expressive, a good match to the structure in the data, and amenable 
to human inspection.  In addition, our application domain demands 
efficient learning.  Grammars meet all of these desiderata.   

GI is the problem of identifying a grammar from a target class 
using a set of strings known to belong to the language of the 
grammar (positive examples) and, optionally, a set of strings 
known to not belong to the language (negative examples).  At a 
coarse level, GI methods tend to be based on merging or splitting 
[5].  In the latter case, the initial grammar accepts all possible 
strings and is refined (made more specific) by creating new non-
terminals and rules [24].  Merging approaches start with a grammar 
that accepts all of the positive examples and no other strings [22].  
Non-terminals and rules are then merged to generalize the language 
to accept unseen strings (but no negative examples if they are 
available). 

Our work is based on the SEQUITUR algorithm [19], which learns 
context-free grammars in time O(n) where n is the size of the input. 
In [11], we proposed a grammar-based motif discovery algorithm 
for time series, and SEQUITUR was the choice of grammar 
induction algorithm. The experimental results show that the 
adaptation of SEQUITUR to time series data successfully discovers 
repeated patterns of previously unknown lengths. While the results 
are promising, there are some limitations with the algorithm. More 
specifically, SEQUITUR uses a splitting operator to replace 
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repeated subsequences in the input string with a non-terminal and, 
when applied recursively, leads to rule hierarchies.  Because there 
is no merging operator, the resulting grammar does not generalize – 
it only accepts the given input string. As a result, it does not work 
well for noisy data.  We address this major weakness in this paper. 
Our approach to merging is related to that employed by Bayesian 
model merging [20], though the goal there is to balance a 
description length prior on grammars with the probability of the 
data given the grammar, and is most similar to previous work on 
learning reversible regular [1] and context-free [20] grammars that 
make extensive use of contexts. 

From the perspective of spatial trajectory mining, the majority of 
existing work concentrates on indexing and similarity searchs in 
large spatial databases [3], most of which are based on shape-based 
similarity measures.  Other pattern learning tasks include 
periodicity analysis [12], relative motion identification [6], 
trajectory classification [8], spatial co-occurrence discovery [2], 
clustering [9], and outlier detection [7, 10].  These techniques were 
shown to be useful for discovering animal and bird migration 
patterns, patterns in hurricane tracks, and abnormalities in vehicle 
movement data.  Analytical and visualization systems have also 
been developed for spatial trajectories [18].  However, most of 
these systems focus on cluster analysis and are optimized for player 
tracking in recreational sports.   

To the best of our knowledge, our work is the first to apply GI to 
the problem of efficiently generating signatures of spatial 
trajectories.  The signatures are applied within a symbolic system 
framework, STAVIS, to improve the robustness of trajectory 
pattern analysis.  

3. Model Generation 
We propose a three-step transformation process that allows 
efficient computation and adaptation of grammar induction 
algorithms on spatial trajectories to generate the grammar rule set 
as follows.  

Step 1 (Data Linearization): We employ a space-filling curve 
(SFC) to map the spatial trajectory data into one dimensional data 
indexed by time.  Space-filling curves provide an efficient and 
effective way to linearize data such that spatial locality is 
preserved.  They have been used extensively for multidimensional 
data organization and for spatial data partitioning [16].  We have 
selected the Hilbert space-filling curve due to its superior ability to 
preserve distances [17]. 

Step 2 (Data discretization): Once we linearize the trajectory, we 
discretize the series into a symbolic string sequence using Symbolic 
Aggregate approXimation (SAX) [14]. SAX offers many unique 
advantages over other aggregation methods.  Specifically, SAX 
allows dimensionality reduction, which not only improves 
computational complexity, but also removes noise and, 
consequently, produces more meaningful results. 

Step 3 (Grammar Induction):  We infer a grammar from the SAX 
string produced from Step 2 using mSEQUITUR.  Each string 
delimited by a space represents one or more consecutive 
subsequences and is treated as a terminal symbol, an atomic unit 
for patterns. mSEQUITUR generates a hierarchy of rules, each of 
which represents a repeated pattern, and from these rules, 
additional machine processing (e.g., motif discovery) can be 
performed. 

3.1 mSEQUITUR 
The starting point for our work is the SEQUITUR algorithm for 
inferring context-free grammars from sequences.  The algorithm 
processes the input sequence in a single left-to-right pass and 
produces as output a context-free grammar that generates one 
string, the input sequence.  SEQUITUR does this by enforcing two 
constraints: bigram uniqueness and rule utility.  The first constraint 

requires that every bigram occurs only once in the grammar, and is 
violated when the second occurrence of a bigram is seen in the left-
to-right pass over the input sequence.  To enforce this constraint the 
two occurrences of the bigram are replaced by a non-terminal that 
expands to the bigram.  The other constraint enforced by 
SEQUITUR is rule utility, which requires that every non-terminal 
be used more than once. Over time the interaction of these two 
rules exposes recurring hierarchical structure in the input sequence. 

As stated earlier, though SEQUITUR is exceptionally efficient for 
a GI method, it does not generalize due to the lack of a merging 
operator. That means the resulting grammars cannot generate or 
recognize any sequences not provided as input. Practically, 
grammars trained on suspicious trajectories would only recognize 
those trajectories, and not other suspicious trajectories that have 
similar, but not identical, structure.  In this section we describe 
mSEQUITUR, a major extension of SEQUITUR that allows 
merging yet is still efficient. 

The merging operator is described as follows.  Given two non-
terminals, X and Y, create a new non-terminal Z and replace all 
occurrences of X and Y in the grammar with Z.  The resulting 
grammar can now generate new strings, ones in which a substring 
generated by an X is replaced by a substring generated by a Y, and 
vice versa.  The difficult question is deciding when such a merge is 
warranted.  The usual answer is to look at context. 

Given a non-terminal A, let Ld(A) be the set of strings generated 
from A by a tree with depth bound d. Note that these strings may 
contain both terminal and non-terminal symbols.  Given s  Ld(A), 
let C(s) be the contexts of s, which is a set of strings whose size is 
the same as the number of non-terminals in s.  The elements of s 
are created by making a copy of s and replacing one non-terminal 
with the wildcard symbol *.  The resulting wildcarded string is a 
context, with the wildcard marking a non-terminal position and the 
remainder of the string being the context.  If two different non-
terminals can fill the wildcard position in the same context (i.e., if 
such a string actually occurs), then those non-terminals are 
candidates for merging. 

Consider the following simple example.  Given the input sequence 
abcababc, SEQUITUR produces the following grammar:  

S  R1 R2 R1; R1  R2 c; R2  a b 

The start symbol, S, expands to the string of non-terminals R1 R2 
R1.  Non-terminal R1 expands to a right-hand side with one non-
terminal (R2) and one terminal (c).  Non-terminal R2 expands to 
the terminal string ab.  If we expand the start symbol to depth 1 we 
get the string R1 R2 R1.  Expanding to depth 2 yields the string R2 
c a b R2 c, and expanding to depth 3 gives the string abcababc.  As 
the expansion depth increases the strings become longer and tend to 
have more terminals and fewer non-terminals. 

Given string s = R1 R2 R1, the contexts of s, denoted C(s), are {* 
R2 R1, R1 * R1, R1 R2 *}.  Given a fixed depth d, we generate 
Ld(A) for all non-terminals A, and then the contexts of each string 
generated.  Note that s = R1 R2 R1 is in L1(S).  If any two different 
fully instantiated (non-wildcarded) string match a context (where 
any non-terminal can match a wildcard), then the non-terminals 
that match the wildcard position are merge candidates. 

When dealing with spatiotemporal trajectories, a context is a partial 
trajectory.  That is, the terminals and non-terminals in the sequence 
ultimately expands to a sequence of terminals, and by virtue of the 
way the terminals were generated and the grammar was learned, the 
terminal sequence represents the path through space and time at the 
level of the raw trajectory data.  Note that every non-terminal in the 
original SEQUITUR algorithm expands to exactly one string of 
terminals.  When two strings differ in precisely one position that 
contains a non-terminal, it means that they correspond to two 
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terminal strings that share some structure but differ in the trajectory 
generated at the unmatched position. 

Time and space complexity: One of the appealing features of 
SEQUITUR is its efficiency.  Therefore, our goal is to support 
merging, and thus learning of grammars that generalize, efficiently.  
In particular, our proposed mSEQUITUR generates grammar in 
time linear in the input sequence length n.  We first note that 
SEQUITUR is a bottom-up algorithm that runs in time linear in the 
size of the input sequence.  To support merging in mSEQUITUR, 
we need a list of the strings that can be generated by each non-
terminal to a fixed depth and the contexts (wildcarded strings) 
associated with each.  Because the algorithm is bottom-up, it is 
trivial to augment the representation to include the depth of a non-
terminal, which is the depth of the tree it generates.  When forming 
non-terminals that expand directly to strings of terminals, their sole 
depth 1 expansion is recorded.  When forming a depth 2 non-
terminal, its full expansion can be recorded based on the 
expansions of its right-hand side.  By recording with each non-
terminal its deepest expansion to depth d−1, it is possible to 
maintain information about strings generated to depth d while 
learning the grammar with only constant overhead.   

Given a non-terminal’s depth d expansion, the contexts for that 
string can be generated in a linear pass over the expansion and 
stored in a hash table keyed on context where the value stored is a 
list of non-terminals that fill wildcard positions.  This hash table 
makes it possible to identify all merge candidates in time O(nd) for 
input sequence length n and depth d expansions of non-terminals.  
Note also that the space required to store the contexts is linear in 
the size of the input.  Initially, each non-terminal generates exactly 
one string to depth d, and the contexts are represented implicitly by 
the positions of the non-terminals in the contexts.  Merging does 
not generate any new contexts, though it does allow them to be 
combined in new ways when making future merging decisions.  
Therefore, while mSEQUITUR runs, the space requirements do not 
grow, but remain linear in the size of the input. 

3.2 STAVIS 
STAVIS supports an end-to-end analysis workflow through a web-
based platform.  It includes a spatial data repository that stores 
recorded trajectory traces composed of the following features: track 
ID, spatial point coordinates, and times.  Although a trajectory is a 
continuous function mapping from the time domain to the spatial 
domain, in practice they are recorded as discrete spatiotemporal 
(ST) point samples.  As a result, the database represents a trajectory 
as an ST point set.   

STAVIS integrates three primary functions: ST filtering, trajectory 
transformation, and signature analysis and visualization.  The 
trajectories of interest are obtained through ST filtering by 
performing an ST query on the dataset. Trajectory transformation 
applies the Hilbert space-filling curve and SAX to map the ST 
points to a time-indexed string sequence.  Signature analysis and 
visualization apply grammar induction (mSEQUITUR and 
SEQUITUR) on the SAX representations and perform motif 
discovery and visualization on the grammar rules.  

STAVIS implements SEQUITUR and mSEQUITUR for signature 
generation and utilizes the resulting grammar to enable the 
following motif discovery methods: 

Fixed-length motif discovery: applied directly on SAX words and 
employs fixed-length motif finding algorithm [13, 21];  Variable-
length motif discovery: applied on signatures generated by 
SEQUITUR and extracts motifs from the signatures;  Noise 
tolerant variable-length motif discovery: applied on signatures 
generated by mSEQUITUR and extracts motifs from the signatures. 

4. EXPERIMENT 
To evaluate the efficiency of our proposed mSEQUITUR method 
and symbolic based approach to trajectory data, we compare the 
baseline motif [13, 21], SEQUITUR, and mSEQUITUR 
approaches to determine their capacity to identify patterns or 
anomalies in various scenarios using STAVIS.  We compiled two 
different test datasets from Microsoft’s GeoLife and a synthetically 
generated trajectory using [4, 23].  The GeoLife trajectories were 
concatenated to mimic repetitive trips with slight divergences. The 
synthetic dataset, called DC_Synth, is a trajectory with 
approximately 10,000 sampled points and generated by 
concatenating one trajectory to itself four times to achieve known 
repetition.  

For each of these datasets, we look at the original trajectory on the 
map to visually identify where common patterns are expected to 
occur.  We also pay attention to locations where discontinuities 
occur on the Hilbert SFC transformed representation to analyze the 
impact this may have on the discovered patterns.  Next, the baseline 
motif, SEQUITUR, and mSEQUITUR are performed on the SAX 
transformed Hilbert curve and the resulting patterns compared.  If a 
specific pattern appears dissimilar to a related occurrence, we 
confirm the results by referring to the time series graph to help 
understand why the two seemingly dissimilar subsequences were 
categorized into the same pattern.  Furthermore, we compare each 
algorithm (baseline motif, SEQUITUR, and mSEQUITUR) to see 
if new patterns are discovered or if previously matching patterns 
are no longer being captured or matched together.   

We experimented with different parameters to evaluate the 
system’s sensitivity to parameter choices.  Initially, we started with 
the parameters used in [14, 15] that were found to be most effective 
in discovering and matching the patterns.  Then we made slight 
changes to those values to avoid largely overlapping subsequences 
that hindered visualization, but still allowed for the discovery of the 
expected patterns.  It was found that SAX window size = 20, 
alphabet size = 4, Hilbert grid order = 24, and mSEQUITUR depth 
= {1,2} gave us the best results. Additionally, the use of a sliding 
window allows us to capture every possible subsequence in the 
time series, while the use of numerosity reduction allows us to 
reduce overlap and detect variable length patterns.  

In Fig. 1, red points on the map represent the original trajectory 
points and blue points show the entire subsequence of a pattern.  
Annotations on the time series graphs show starting points of 
pattern subsequences.  A solid lined box displays the location of a 
discovered rule occurrence, and a dashed box of the same color 
indicates where the matching rule occurrence was expected but not 
found.  Fig. 1 (a-c) illustrate three different rules that SEQUITUR 
has generated, Fig. 1(d) shows the results of baseline motif, and 
Fig. 1(e) depicts the patterns discovered by mSEQUITUR.  
Although Fig. 1(a) and Fig. 1(b) detect a frequent pattern on one 
half of the trajectory, they both fail to detect its corresponding 
pattern on the other repeated, half of the trip.  The rule depicted in 
Fig. 1(c), however, is able to find the frequent patterns that were 
missed in Fig. 1(a) and Fig. 1(b).  All of these rules, however, were 
successfully captured by mSEQUITUR’s context and merge 
candidates shown in Fig. 1(e).  Since mSEQUITUR matches the 
similar contexts of these patterns and captures the potential merge 
candidates, the combination of all three related rules results in more 
discoveries of the expected pattern occurrences.  For the baseline 
motif results (Fig. 1(d)), the algorithm discovered many of the 
patterns that the three SEQUITUR rules missed, but still misses 
some of the patterns that mSEQUITUR was able to detect. While 
mSEQUITUR is not always able to detect every matching pattern, 
it is able to perform as efficiently as SEQUITUR and the baseline 
motif but with higher accuracy. 
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